Assessment of airway response distribution and paradoxical airway dilation in mice during methacholine challenge.

J Appl Physiol (1985)

Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia.

Published: March 2017

AI Article Synopsis

  • The study focuses on understanding how airway diameters respond during bronchoconstriction by using advanced imaging techniques, overcoming limitations from previous manual measurements.
  • Researchers measured airway diameters in mice before and after a bronchoconstricting agent was administered, finding significant variability in airway responses.
  • The findings indicate that the lungs act as an interconnected system rather than isolated units, highlighting the need for more comprehensive analysis to understand airway response mechanisms.

Article Abstract

Detailed information on the distribution of airway diameters during bronchoconstriction in situ is required to understand the regional response of the lungs. Imaging studies using computed tomography (CT) have previously measured airway diameters and changes in response to bronchoconstricting agents, but the manual measurements used have severely limited the number of airways measured per subject. Hence, the detailed distribution and heterogeneity of airway responses are unknown. We have developed and applied dynamic imaging and advanced image-processing methods to quantify and compare hundreds of airways in vivo. The method, based on CT, was applied to house dust-mite-sensitized and control mice during intravenous methacholine (MCh) infusion. Airway diameters were measured pre- and post-MCh challenge, and the results compared demonstrate the distribution of airway response throughout the lungs during mechanical ventilation. Forced oscillation testing was used to measure the global response in lung mechanics. We found marked heterogeneity in the response, with paradoxical dilation of airways present at all airway sizes. The probability of paradoxical dilation decreased with decreasing baseline airway diameter and was not affected by pre-existing inflammation. The results confirm the importance of considering the lung as an entire interconnected system rather than a collection of independent units. It is hoped that the response distribution measurements can help to elucidate the mechanisms that lead to heterogeneous airway response in vivo. Information on the distribution of airway diameters during bronchoconstriction in situ is critical for understanding the regional response of the lungs. We have developed an imaging method to quantify and compare the size of hundreds of airways in vivo during bronchoconstriction in mice. The results demonstrate large heterogeneity with both constriction and paradoxical dilation of airways, confirming the importance of considering the lung as an interconnected system rather than a collection of independent units.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00476.2016DOI Listing

Publication Analysis

Top Keywords

airway diameters
16
airway response
12
distribution airway
12
response lungs
12
paradoxical dilation
12
airway
10
response
9
response distribution
8
detailed distribution
8
diameters bronchoconstriction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!