Background: Several Streptococcus pneumoniae proteins play a role in pathogenesis and are being investigated as vaccine targets. It is largely unknown whether naturally acquired antibodies reduce the risk of colonization with strains expressing a particular antigenic variant.
Methods: Serum immunoglobulin G (IgG) titers to 28 pneumococcal protein antigens were measured among 242 individuals aged <6 months-78 years in Native American communities between 2007 and 2009. Nasopharyngeal swabs were collected >- 30 days after serum collection, and the antigen variant in each pneumococcal isolate was determined using genomic data. We assessed the association between preexisting variant-specific antibody titers and subsequent carriage of pneumococcus expressing a particular antigen variant.
Results: Antibody titers often increased across pediatric groups before decreasing among adults. Individuals with low titers against group 3 pneumococcal surface protein C (PspC) variants were more likely to be colonized with pneumococci expressing those variants. For other antigens, variant-specific IgG titers do not predict colonization.
Conclusion: We observed an inverse association between variant-specific antibody concentration and homologous pneumococcal colonization for only 1 protein. Further assessment of antibody repertoires may elucidate the nature of antipneumococcal antibody-mediated mucosal immunity while informing vaccine development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6005115 | PMC |
http://dx.doi.org/10.1093/infdis/jiw628 | DOI Listing |
PLoS One
January 2025
Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
Streptococcus pneumoniae (SPN) is a significant pathogen causing pneumonia and meningitis, particularly in vulnerable populations like children and the elderly. Available pneumonia vaccines have limitations since they only cover particular serotypes and have high production costs. The emergence of antibiotic-resistant SPN strains further underscores the need for a new, cost-effective, broad-spectrum vaccine.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Beijing Minhai Biotechnology Co. Ltd, Beijing 102600, China. Electronic address:
Streptococcus pneumoniae is a major pathogen of bacterial pneumonia, meningitis, sepsis, and otitis media. The pathogenicity of this bacterium is largely attributed to its polysaccharide capsule, a protective layer around bacterial cell that enables bacteria to resist against host defense. Capsular polysaccharides (CPSs) of S.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
Streptococcus pneumoniae (Sp; pneumococcus), the most common agent of community-acquired pneumonia, can spread systemically, particularly in the elderly, highlighting the need for adjunctive therapies. The airway epithelial barrier defends against bacteremia and is dependent upon apical junctional complex (AJC) proteins such as E-cadherin. After mouse lung challenge, pneumolysin (PLY), a key Sp virulence factor, stimulates epithelial secretion of an inflammatory eicosanoid, triggering the infiltration of polymorphonuclear leukocytes (PMNs) that secrete high levels of neutrophil elastase (NE), thus promoting epithelial damage and systemic infection.
View Article and Find Full Text PDFCells
December 2024
Institute of Anatomy, Rostock University Medical Center, Rostock, Gertrudenstraße 9, 18057 Rostock, Germany.
Background: The brain is protected from invading pathogens by the blood-brain barrier (BBB) and the innate immune system. Pattern recognition receptors play a crucial role in detecting bacteria and initiating the innate immune response. Among these are G-protein-coupled formyl peptide receptors (FPR), which are expressed by immune cells in the central nervous system.
View Article and Find Full Text PDFBiomolecules
December 2024
Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina.
Orally administered immunomodulatory lactobacilli can stimulate respiratory immunity and enhance the resistance to primary infections with bacterial and viral pathogens. However, the potential beneficial effects of immunomodulatory lactobacilli against respiratory superinfection have not been evaluated. In this work, we showed that the feeding of infant mice with CRL1505 or MPL16 strains can reduce susceptibility to the secondary pneumococcal infection produced after the activation of TLR3 in the respiratory tract or after infection with RVS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!