Increased susceptibility to Aβ toxicity in neuronal cultures derived from familial Alzheimer's disease (PSEN1-A246E) induced pluripotent stem cells.

Neurosci Lett

Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA; Universidad de los Andes, Facultad de Medicina, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile. Electronic address:

Published: February 2017

Alzheimer's disease (AD) is the most common cause of late-life dementia and represents one of the leading causes of death worldwide. The generation of induced pluripotent stem cells (iPSC) has facilitated the production and differentiation of stem cells from patients somatic cells, offering new opportunities to model AD and other diseases in vitro. In this study, we generated iPSCs from skin fibroblasts obtained from a healthy individual, as well as sporadic (sAD) and familial AD (fAD, PSEN1-A246E mutation) patients. iPSC lines were differentiated into neuronal precursors (iPSC-NPCs) and neurons that were subjected to amyloid beta (Aβ) toxicity assays. We found that neurons derived from the fAD patient have a higher susceptibility to Aβ1-42 oligomers compared with neurons coming from healthy and sAD individuals. Our findings suggest that neurons from patients with PSEN1-A246E mutation have intrinsic properties that make them more susceptible to the toxic effects of Aβ1-42 oligomers in the AD brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2016.12.060DOI Listing

Publication Analysis

Top Keywords

stem cells
12
aβ toxicity
8
alzheimer's disease
8
induced pluripotent
8
pluripotent stem
8
psen1-a246e mutation
8
aβ1-42 oligomers
8
increased susceptibility
4
susceptibility aβ
4
toxicity neuronal
4

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

An automatic cervical cell classification model based on improved DenseNet121.

Sci Rep

January 2025

Department of Biomedical Engineering, School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.

The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!