Resting-state functional magnetic resonance imaging (fMRI) has highlighted the rich structure of brain activity in absence of a task or stimulus. A great effort has been dedicated in the last two decades to investigate functional connectivity (FC), i.e. the functional interplay between different regions of the brain, which was for a long time assumed to have stationary nature. Only recently was the dynamic behaviour of FC revealed, showing that on top of correlational patterns of spontaneous fMRI signal fluctuations, connectivity between different brain regions exhibits meaningful variations within a typical resting-state fMRI experiment. As a consequence, a considerable amount of work has been directed to assessing and characterising dynamic FC (dFC), and several different approaches were explored to identify relevant FC fluctuations. At the same time, several questions were raised about the nature of dFC, which would be of interest only if brought back to a neural origin. In support of this, correlations with electroencephalography (EEG) recordings, demographic and behavioural data were established, and various clinical applications were explored, where the potential of dFC could be preliminarily demonstrated. In this review, we aim to provide a comprehensive description of the dFC approaches proposed so far, and point at the directions that we see as most promising for the future developments of the field. Advantages and pitfalls of dFC analyses are addressed, helping the readers to orient themselves through the complex web of available methodologies and tools.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2016.12.061 | DOI Listing |
Transl Psychiatry
December 2024
School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
Bipolar disorder (BD) is a neuropsychiatric disorder characterized by severe disturbance and fluctuation in mood. Dynamic functional connectivity (dFC) has the potential to more accurately capture the evolving processes of emotion and cognition in BD. Nevertheless, prior investigations of dFC typically centered on larger time scales, limiting the sensitivity to transient changes.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice 32-083, Poland. Electronic address:
The nervous system's regenerative potential has sparked interest in exploring novel approaches to generate Schwann cell-like cells (SC-LCs) from chicken blastoderm (B)-derived embryonic stem cells (B-ESCs). This study investigates the hypothesis that specific growth factors, when used during ex-ovo culture, can induce the differentiation of chicken B-ESCs into cells resembling Schwann cells (SCs). Blastodermal cells (BCs) were isolated from in vivo-fertilized eggs at stage X followed by 14-d proliferative culture (PRC) of B-ESCs and subsequent 14-d glial/neurolemmogenic differentiation culture (DFC).
View Article and Find Full Text PDFBrain Res
December 2024
Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; China Rehabilitation Research Center, Beijing, China; University of Health and Rehabilitation Sciences, Qingdao, Shandong, China; Capital Medical University, Beijing, China. Electronic address:
Aims: To explore the functional brain imaging characteristics of patients with disorders of consciousness (DoC).
Methods: This prospective cohort study consecutively enrolled 27 patients in minimally conscious state (MCS), 23 in vegetative state (VS), and 25 age-matched healthy controls (HC). Resting-state functional magnetic resonance imaging (rs-fMRI) was employed to evaluate the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), degree centrality (DC), and functional connectivity (FC).
Heliyon
December 2024
Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
Background: and purpose: The investigation of functional plasticity and remodeling of the brain in patients with retinal detachment (RD) has gained increasing attention and validation. However, the precise alterations in the topological configuration of dynamic functional networks are still not fully understood. This study aimed to investigate the topological structure of dynamic brain functional networks in RD patients.
View Article and Find Full Text PDFHum Brain Mapp
December 2024
Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
The human pulvinar is considered a prototypical associative thalamic nucleus as it represents a key node in several cortico-subcortical networks. Through this extensive connectivity to widespread brain areas, it has been suggested that the pulvinar may play a central role in modulating cortical oscillatory dynamics of complex cognitive and executive functions. Additionally, derangements of pulvinar activity are involved in different neuropsychiatric conditions including Lewy-body disease, Alzheimer's disease, and schizophrenia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!