Vertical distribution of dehalogenating bacteria in mangrove sediment and their potential to remove polybrominated diphenyl ether contamination.

Mar Pollut Bull

Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China. Electronic address:

Published: November 2017

The removal and degradation of polybrominated diphenyl ethers (PBDEs) in sediments are not clear. The vertical distribution of total and dehalogenating bacteria in sediment cores collected from a typical mangrove swamp in South China and their intrinsic degradation potential were investigated. These bacterial groups had the highest abundances in surface sediments (0-5cm). A 5-months microcosm experiment also showed that surface sediments had the highest rate to remove BDE-47 than deeper sediments (5-30cm) under anaerobic condition. The deeper sediments, being more anaerobic, had lower population of dehalogenating bacteria leading to a weaker BDE-47 removal potential than surface sediments. Stepwise multiple regression analysis indicated that Dehalococcoides spp. were the most important dehalogenating bacteria affecting the anaerobic removal of BDE-47 in mangrove sediments. This is the first study reporting that mangrove sediments harbored diverse groups of dehalogenating bacteria and had intrinsic potential to remove PBDE contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2016.12.030DOI Listing

Publication Analysis

Top Keywords

dehalogenating bacteria
20
surface sediments
12
vertical distribution
8
potential remove
8
polybrominated diphenyl
8
sediments
8
deeper sediments
8
mangrove sediments
8
dehalogenating
5
bacteria
5

Similar Publications

Distribution of microbial taxa and genes degrading halogenated organic pollutants in the mangroves.

J Hazard Mater

January 2025

Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China. Electronic address:

Anthropogenic activities have led to serious contamination of halogenated organic pollutants (HOPs), such as PCBs, PBDEs, and HBCDs, in the mangrove wetland. Biodegradation of HOPs is generally driven by environmental microorganisms harboring dehalogenase genes. However, little is known if HOPs can affect the distributions of HOPs-degrading bacteria and dehalogenase genes in the mangrove wetlands.

View Article and Find Full Text PDF

Water scarcity in the Mediterranean area has increased the number of intermittent rivers. Recently, hyporheic zones (HZ) of intermittent rivers have gained attention since a substantial part of the stream's natural purification capacity is located within these zones. Thus, understanding the flow dynamics in HZs is crucial for gaining insights into the degradation of organic micropollutants.

View Article and Find Full Text PDF

Organohalide respiration: retrospective and perspective through bibliometrics.

Front Microbiol

December 2024

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China.

Organohalide-respiring bacteria (OHRB) play a pivotal role in the transformation of organohalogens in diverse environments. This bibliometric analysis provides a timely overview of OHRB research trends and identifies knowledge gaps. Publication numbers have steadily increased since the process was discovered in 1982, with fluctuations in total citations and average citations per publication.

View Article and Find Full Text PDF

Trichloroethylene detoxification in low-permeability soil via electrokinetic-enhanced bioremediation technology: Long-term feasibility and spatial-temporal patterns.

J Hazard Mater

December 2024

MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China,. Electronic address:

In situ remediation of low-permeability soils contaminated with trichloroethylene (TCE) is challenging due to limited mass transfer and low bioavailability in clay soils. The electrokinetic-enhanced bioremediation (EK-BIO) system offers a promising solution by combining electrokinetics with bioremediation to address these challenges. While previous studies have demonstrated microbial succession and TCE removal, the long-term performance of dechlorination and interactions between electrode reactions and anaerobic dechlorination remain unclear.

View Article and Find Full Text PDF

Contrasting Kinetics of Highly Similar Chloroalkane Reductive Dehalogenases.

Environ Sci Technol

December 2024

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.

Article Synopsis
  • Chloroform and trichloroethanes are common groundwater pollutants, and bioremediation is an efficient method to remove them using special enzymes called reductive dehalogenases (RDases) from certain bacteria.
  • This study examines three related chloroalkane-reductases (TmrA, CfrA, AcdA) to compare their activity on different chlorinated solvents, revealing that TmrA and AcdA are more effective on chloroform than trichloroethane.
  • Even though TmrA, CfrA, and AcdA are very similar in their genetic makeup, they show significant differences in how they behave, affecting their potential use in bioremed
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!