A system dynamics urban water management model for Macau, China.

J Environ Sci (China)

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China. Electronic address:

Published: December 2016

Urban water resources have been facing significant pressure from population growth, urbanization, and climate change. A system dynamics urban water management model was proposed to simulate the dynamic interactions between urban water demands and society, economy, climate, and water conservation. The residents' water conservation willingness was incorporated in the model and water-saving effects were quantified. The simulation results for Macau showed that population size was the main driving force for urban water demand. The change of temperature and precipitation has obvious effects on the landscape water demand. The water demand output is sensitive to the change in population, per capita demand, and temperature. Increased precipitation will reduce urban water demand and increased economic growth will increase water demand. By implementing integrated water conservation measures and improved water conservation willingness, water demand could be reduced by 17.5%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2016.06.034DOI Listing

Publication Analysis

Top Keywords

urban water
24
water demand
24
water conservation
16
water
14
system dynamics
8
dynamics urban
8
water management
8
management model
8
conservation willingness
8
demand
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!