In this work we report on the hydrogen production capacity of single-chamber microbial electrohydrogenesis cell (MEC) with optimized design characteristics, in particular cathode surface area and anode-cathode spacing using acetate as substrate. The results showed that the maximal H production rates and best energetic performances could be obtained using the smallest, 71 cm stainless steel cathode and 4 cm electrode distances, employing a 60 cm bioanode. Cyclic voltammetric analysis was employed to investigate the dominant electron transfer mechanism of the architecturally optimized system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2016.12.061 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Medicine, Huanghe Science and Technology University, Zhengzhou 450061, P. R. China.
Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.
View Article and Find Full Text PDFBackground: Transcranial Electrical Stimulation (TES), Temporal Interference Stimulation (TIS), Electroconvulsive Therapy (ECT) and Tumor Treating Fields (TTFields) are based on the application of electric current patterns to the brain.
Objective: The optimal electrode positions, shapes and alignments for generating a desired current pattern in the brain vary between persons due to anatomical variability. The aim is to develop a flexible and efficient computational approach to determine individually optimal montages based on electric field simulations.
Small
January 2025
Faculty of Materials Science and Engineering, Analysis and Testing Research Center, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.
The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
Proton conducting electrochemical cells (PCECs) are efficient and clean intermediate-temperature energy conversion devices. The proton concentration across the PCECs is often nonuniform, and characterizing the distribution of proton concentration can help to locate the position of rate-limiting reactions. However, the determination of the local proton concentration under operating conditions remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!