Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment.

J Mech Behav Biomed Mater

Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China.

Published: May 2017

Plasma arc additive manufacturing (PAM) is a novel additive manufacturing (AM) technology due to its big potential in improving efficiency, convenience and being cost-savings compared to other AM processes of high energy bea\m. In this research, several Ti-6Al-4V thin walls were deposited by optimized weld wire-feed continuous PAM process (CPAM), in which the heat input was gradually decreased layer by layer. The deposited thin wall consisted of various morphologies, which includes epitaxial growth of prior β grains, horizontal layer bands, martensite and basket weave microstructure, that depends on the heat input, multiple thermal cycles and gradual cooling rate in the deposition process. By gradually reducing heat input of each bead and using continuous current in the PAM process, the average yield strength (YS), ultimate tensile strength (UTS) and elongation reach about 877MPa, 968MPa and 1.5%, respectively, which exceed the standard level of forging. The mechanical property was strengthened and toughened due to weakening the aspect ratio of prior β grains and separating nano-dispersoids among α lamellar. Furthermore, this research demonstrates that the CPAM process has a potential to manufacture or remanufacture in AM components of metallic biomaterials without post-processing heat treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2016.12.015DOI Listing

Publication Analysis

Top Keywords

additive manufacturing
12
heat input
12
mechanical property
8
plasma arc
8
arc additive
8
heat treatment
8
pam process
8
prior grains
8
heat
5
microstructural evolution
4

Similar Publications

Monolayer assembly of charged colloidal particles at liquid interfaces opens a new avenue for advancing the additive manufacturing of thin film materials and devices with tailored properties. In this study, we investigated the dynamics of electrosprayed colloidal particles at curved droplet interfaces through a combination of physics-based computational simulations and machine learning. We employed a novel mesh-constrained Brownian dynamics (BD) algorithm coupled with Ansys® electric field simulations to model the transport and assembly of charged particles on a non-spherical droplet surface.

View Article and Find Full Text PDF

Additive manufacturing (AM) of magnetic materials has recently attracted increasing interest for various applications but is often limited by the high cost and supply chain risks of rare-earth-element (REE) magnetic precursors. Recent advances in nanomanufacturing have enabled the development of rare-earth-free (REF) magnetic materials, such as spinel ferrites, hexaferrites, MnAl, MnBi, Alnico, FePt, and iron oxides/nitrides, which offer promising alternatives for printing high-performance magnetic devices. This review provides a detailed overview of the latest developments in REF magnetic materials, covering both synthesis strategies of REF magnetic materials/nanomaterials and their integration into AM processes.

View Article and Find Full Text PDF

An Optoelectronic Sensing Real-Time Glucose Detection Film Using Photonic Crystal Enhanced Rare Earth Fluorescence and Additive Manufacturing.

Small

January 2025

State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.

In this research, a novel detection method employing rare-earth upconversion nanoparticle (UCNP) as the core, coated with MnO nanosheets is designed, which formed a color and fluorescence dual-responsive UCNP composite material, MnO-modified NaYF:Yb,Tm@NaYF. By enabling both colorimetric and fluorescence methods simultaneously, this composite material allows for the detection of glucose concentration under different conditions, while exhibiting strong resistance to environmental interference, chemical stability, and accuracy. To further enhance the sensitivity of the detection method, a photonic crystals (PCs)-PDMS array where polymethyl methacrylate PCs are deposited onto a substrate composed of PDMS-glass slice with hydrophobic surfaces is developed.

View Article and Find Full Text PDF

Microfluidic channel systems can be used for various biomedical applications, including drug administration, wound healing, cell culture research, and many others. A 3D microfluidic channel system has enormous potential over conventional microfluidic channel systems, including the capacity to simulate biological events in a laboratory setting. This system has the ability to recreate biological phenomena such as concentration gradient generators (CGGs).

View Article and Find Full Text PDF

Design and Evaluation of 3D-Printed Lattice Structures as High Flow Rate Aerosol Filters.

ACS Appl Eng Mater

December 2024

Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.

Aerosol contamination presents significant challenges across various industries, ranging from healthcare to manufacturing. Over the past few years, open foam filters have gained prominence for their ability to efficiently capture particles while allowing reasonable airflow. In this work, we present the use of 3D-printed idealized open foam-like lattice structures as aerosol filtration media, leveraging advances in additive manufacturing to generate these highly tunable and modular filters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!