Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The neural connectome is a critical determinant of brain function. Circuits of precisely wired neurons, and the features of transmission at the synapses connecting them, are thought to dictate information processing in the brain. While recent technological advances now allow to define the anatomical and functional neural connectome at unprecedented resolution, the elucidation of the molecular mechanisms that establish the precise patterns of connectivity and the functional characteristics of synapses has remained challenging. Here, we describe the power and limitations of genetic approaches in the analysis of mechanisms that control synaptic connectivity and function, and discuss how recent methodological developments in proteomics might be used to elucidate the molecular synaptic connectome that is at the basis of the neural connectome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316339 | PMC |
http://dx.doi.org/10.1016/j.conb.2016.12.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!