Ultrasmall Yttrium Iron Garnet Nanoparticles with High Coercivity at Low Temperature Synthesized by Laser Ablation and Fragmentation of Pressed Powders.

Chemphyschem

Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany.

Published: May 2017

Pulsed laser ablation of pressed yttrium iron garnet powders in water is studied and compared to the ablation of a single-crystal target. We find that target porosity is a crucial factor, which has far-reaching implications on nanoparticle productivity. Although nanoparticle size distributions obtained by analytical disc centrifugation and transmission electron microscopy (TEM) are in agreement, X-ray diffraction and energy dispersive X-ray analysis show that only nanoparticles obtained from targets with densities close to that of a bulk target lead to comparable properties. Our findings also show why the gravimetrical measurement of nanoparticle productivity is often flawed and needs to be complemented by colloidal productivity measurements. The synthesized YIG nanoparticles are further reduced in size by laser fragmentation to obtain sizes smaller than 3 nm. Since the particle diameters are close to the YIG lattice constant, these ultrasmall nanoparticles reveal an immense change of the magnetic properties, exhibiting huge coercivity (0.11 T) and irreversibility fields (8 T) at low temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201601183DOI Listing

Publication Analysis

Top Keywords

yttrium iron
8
iron garnet
8
laser ablation
8
nanoparticle productivity
8
ultrasmall yttrium
4
nanoparticles
4
garnet nanoparticles
4
nanoparticles high
4
high coercivity
4
coercivity low
4

Similar Publications

We propose a scheme to generate nonreciprocal entanglement and one-way steering between two distant ferrimagnetic microspheres in waveguide electromagnonics, where the magnon modes of two yttrium iron garnet (YIG) spheres are simultaneously coupled to each other through coherent and dissipative interactions. By matching the coherent interaction with its corresponding dissipative counterpart, unidirectional coupling between two magnon modes can be realized, and then in the presence of significant Kerr nonlinearities, we can obtain strong entanglement and one-way steering. Depending on the direction of the microwave propagation, the long-distance entanglement and steering can be generated nonreciprocally.

View Article and Find Full Text PDF

Carbon nanotube-Yttrium iron garnet (CNT-YIG) nanohybrid has been successfully synthesized using chemical vapor deposition (CVD) with yttrium iron garnet (YIG) nanopowders as catalyst, ethanol as carbon stock, and argon as carrier gas. Carbon nanotube (CNT) was observed to have grown from the YIG nanopowders with bamboo-like structures of CNT at a synthesis temperature of 900 °C. FESEM and RAMAN characterization indicated that the CNT-YIG nanohybrid exhibited the growth of bamboo-like CNT with high graphitization.

View Article and Find Full Text PDF

Absorptive frequency-selective transmission/reflection (AFST/AFSR) metamaterials (MMs) embedded with yttrium-iron-garnet are proposed, capable of achieving angular-insensitive and switchable octave absorption. The season optimization algorithm is utilized to optimize the structural parameters of the MM, thus achieving exceptional angular stability. By adjusting the discrete decreasing magnetic field applied to the MM, it can freely switch between double, triple, quadruple, and fivefold octave absorptions.

View Article and Find Full Text PDF

Optical metasurfaces employing the Pancharatnam-Berry (PB) geometric phase, called PB metasurfaces, have been extensively applied to realize spin-dependent light manipulations. However, the properties of conventional PB metasurfaces are intrinsically limited by the Lorentz reciprocity. Breaking reciprocity can give rise to new properties and phenomena unavailable in conventional reciprocal systems.

View Article and Find Full Text PDF

Y-modified perovskite-type oxides BaCe Y O ( = 0-0.30) were synthesised and used as supports for cobalt catalysts. The influence of yttrium content on the properties of the support and catalyst performance in the ammonia synthesis reaction was examined using PXRD, STEM-EDX, and sorption techniques (N physisorption, H-TPD, CO-TPD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!