Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To cope with stress and increased accumulation of misfolded proteins, plants and animals use a survival pathway known as the unfolded protein response (UPR) that signals between the endoplasmic reticulum (ER) and the nucleus to maintain cell homeostasis via proper folding of proteins. B-cell lymphoma2 (Bcl-2)-associated athanogene (BAG) proteins are an evolutionarily conserved family of co-chaperones that are linked to disease states in mammals and responses to environmental stimuli (biotic and abiotic) in plants. Molecular and physiological techniques were used to functionally characterize a newly identified branch of the UPR initiated by the ER-localized co-chaperone from Arabidopsis thaliana, AtBAG7. AtBAG7 has functional roles in both the ER and the nucleus. Upon heat stress, AtBAG7 is sumoylated, proteolytically processed and translocated from the ER to the nucleus, where interaction with the WRKY29 transcription factor occurs. Sumoylation and translocation are required for the AtBAG7-WRKY29 interaction and subsequent stress tolerance. In the ER, AtBAG7 interacts with the ER-localized transcription factor, AtbZIP28, and established UPR regulator, the AtBiP2 chaperone. The results indicate that AtBAG7 plays a central regulatory role in the heat-induced UPR pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.14388 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!