Mixotrophy everywhere on land and in water: the grand écart hypothesis.

Ecol Lett

Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, 29680, Roscoff, France.

Published: February 2017

AI Article Synopsis

Article Abstract

There is increasing awareness that many terrestrial and aquatic organisms are not strictly heterotrophic or autotrophic but rather mixotrophic. Mixotrophy is an intermediate nutritional strategy, merging autotrophy and heterotrophy to acquire organic carbon and/or other elements, mainly N, P or Fe. We show that both terrestrial and aquatic mixotrophs fall into three categories, namely necrotrophic (where autotrophs prey on other organisms), biotrophic (where heterotrophs gain autotrophy by symbiosis) and absorbotrophic (where autotrophs take up environmental organic molecules). Here we discuss their physiological and ecological relevance since mixotrophy is found in virtually every ecosystem and occurs across the whole eukaryotic phylogeny, suggesting an evolutionary pressure towards mixotrophy. Ecosystem dynamics tend to separate light from non-carbon nutrients (N and P resources): the biological pump and water stratification in aquatic ecosystems deplete non-carbon nutrients from the photic zone, while terrestrial plant successions create a canopy layer with light but devoid of non-carbon soil nutrients. In both aquatic and terrestrial environments organisms face a grand écart (dancer's splits, i.e., the need to reconcile two opposing needs) between optimal conditions for photosynthesis vs. gain of non-carbon elements. We suggest that mixotrophy allows adaptation of organisms to such ubiquist environmental gradients, ultimately explaining why mixotrophic strategies are widespread.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.12714DOI Listing

Publication Analysis

Top Keywords

grand écart
8
terrestrial aquatic
8
non-carbon nutrients
8
mixotrophy
5
mixotrophy land
4
land water
4
water grand
4
écart hypothesis
4
hypothesis increasing
4
increasing awareness
4

Similar Publications

Jaundice is an indication of hyperbilirubinemia and is caused by derangements in bilirubin metabolism. It is typically apparent when serum bilirubin levels exceed 3 mg/dL and can indicate serious underlying disease of the liver or biliary tract. A comprehensive medical history, review of systems, and physical examination are essential for differentiating potential causes such as alcoholic liver disease, biliary strictures, choledocholithiasis, drug-induced liver injury, hemolysis, or hepatitis.

View Article and Find Full Text PDF

Background: This cross-sectional study aims to determine the mortality trends in patients with SARS-CoV-2 infection during the pandemic in Flint, MI.

Methods: Records from 1,663 consecutive adult patients (≥18 years of age) with confirmed SARS-CoV-2 infection, admitted and discharged from our facility from 03/2020 through 02/2022, were abstracted and analyzed. Multivariable logistic regression analysis was performed to examine the association between study explanatory variables (ie, sex, age, co-morbidities, etc.

View Article and Find Full Text PDF

Carbon dioxide capture is a vital approach for mitigating air pollution and global warming. In this context, metal-organic frameworks are promising candidates. Particularly, MIL-88A (M), where the metal nodes (M) are connected to fumarate linkers in its structure, has demonstrated significant potential for CO capture.

View Article and Find Full Text PDF

Background: Liver transplant (LT) patients face various challenges, including an increased risk of coronary artery disease (CAD) for a variety of reasons, with 70% of LT recipients having one cardiovascular event. Coronary artery bypass grafting (CABG) remains one of the most commonly performed major surgical procedures in the United States, with 20-30% of LT patients requiring a CABG. Many studies have analyzed when to perform a CABG and CAD workup pre-LT, but this population remains a problem.

View Article and Find Full Text PDF

The finite-element method (FEM) is a well-established procedure for computing approximate solutions to deterministic engineering problems described by partial differential equations. FEM produces discrete approximations of the solution with a discretisation error that can be quantified with a posteriori error estimates. The practical relevance of error estimates for biomechanics problems, especially for soft tissue where the response is governed by large strains, is rarely addressed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!