Since the human genome was decoded, great emphasis has been placed on the unique, personal nature of the genome, along with the benefits that personalized medicine can bring to individuals and the importance of safeguarding genetic privacy. As a result, an equally important aspect of the human genome - its common nature - has been underappreciated and underrepresented in the ethics literature and policy dialogue surrounding genetics and genomics. This article will argue that, just as the personal nature of the genome has been used to reinforce individual rights and justify important privacy protections, so too the common nature of the genome can be employed to support protections of the genome at a population level and policies designed to promote the public's wellbeing. In order for public health officials to have the authority to develop genetics policies for the sake of the public good, the genome must have not only a common, but also a public, dimension. This article contends that DNA carries a public dimension through the use of two conceptual frameworks: the common heritage (CH) framework and the common resource (CR) framework. Both frameworks establish a public interest in the human genome, but the CH framework can be used to justify policies aimed at preserving and protecting the genome, while the CR framework can be employed to justify policies for utilizing the genome for the public benefit. A variety of possible policy implications are discussed, with special attention paid to the use of large-scale genomics databases for public health research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bioe.12329 | DOI Listing |
Annu Rev Genomics Hum Genet
January 2025
Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington, USA;
In this short memoir, I recount the series of improbable interactions and events that led me from medical school to a leadership role in the Human Genome Project.
View Article and Find Full Text PDFJ Hered
January 2025
Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, 5A, Oester Farimagsgade, Copenhagen, 1353, Denmark.
The stone marten (Martes foina) is an important species for cytogenetic studies in the order Carnivora. ZooFISH probes created from its chromosomes provided a strong and clean signal in chromosome painting experiments and were valuable for studying the evolution of carnivoran genome architecture. The research revealed that the stone marten chromosome set is similar to the presumed ancestral karyotype of the Carnivora, which added an additional value for the species.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, Brazil.
Insecticide resistance is a major problem in food production, environmental sustainability, and human health. The cotton bollworm Helicoverpa armigera is a globally distributed crop pest affecting over 300 crop species. H.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland.
Importance: Sensitivity to environmental stress and adversity may influence lung cancer risk, highlighting a critical link between psychosocial factors and cancer etiology.
Objective: To evaluate whether genetically estimated sensitivity to environmental stress and adversity is associated with lung cancer risk.
Design, Setting, And Participants: Data were obtained from a genome-wide association study identifying 37 independent genetic variants strongly associated with sensitivity to environmental stress and adversity and a cross-ancestry genome-wide meta-analysis from the International Lung Cancer Consortium.
J Vis Exp
January 2025
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University;
The extent of functional sequences within the human genome is a pivotal yet debated topic in biology. Although high-throughput reverse genetic screens have made strides in exploring this, they often limit their scope to known genomic elements and may introduce non-specific effects. This underscores the urgent need for novel functional genomics tools that enable a deeper, unbiased understanding of genome functionality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!