Transcranial magnetic and electric stimulation of the brain are novel and highly promising techniques currently employed in both research and clinical practice. Improving or rehabilitating brain functions by modulating excitability with these noninvasive tools is an exciting new area in neuroscience. Since the cerebellum is closely connected with the cerebral regions subserving motor, associative, and affective functions, the cerebello-thalamo-cortical pathways are an interesting target for these new techniques. Targeting the cerebellum represents a novel way to modulate the excitability of remote cortical regions and their functions. This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues. Some recommendations for future research are implemented as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12311-016-0840-7 | DOI Listing |
J Neural Transm (Vienna)
January 2025
Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.
The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Cerebro, Emoción y Conducta, School of Medicine, Universidad de las Américas (UDLA), Quito 170124, Ecuador.
Paraneoplastic cerebellar degeneration (PCD) is a rapidly progressive, immune-mediated syndrome characterized by the degeneration of Purkinje cells, often associated with the presence of antibodies targeting intracellular antigens within these cells. These autoantibodies are implicated in the induction of cytotoxicity, leading to Purkinje cell death, as demonstrated in in vitro models. However, the precise roles of antibodies and T lymphocytes in mediating neuronal injury remain a subject of ongoing research, with T cells appearing to be the main effectors of cerebellar injury.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
School of Medicine, South China University of Technology, Guangzhou, China.
Background: Epidemiological and genetic studies have elucidated associations between antihypertensive medication and Alzheimer's disease (AD), with the directionality of these associations varying upon the specific class of antihypertensive agents.
Methods: Genetic instruments for the expression of antihypertensive drug target genes were identified using expression quantitative trait loci (eQTL) in blood, which are associated with systolic blood pressure (SBP). Exposure was derived from existing eQTL data in blood from the eQTLGen consortium and in the brain from the PsychENCODE and subsequently replicated in GTEx V8 and BrainMeta V2.
Cell Rep
January 2025
Department of Cell Biology and Anatomy, LSUHSC, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA. Electronic address:
Stress can alter behavior and contributes to psychiatric disorders by regulating the expression of the GluA2 AMPA receptor subunit. We have previously shown in mice that exposure to predator odor stress elevates GluA2 transcription in cerebellar molecular layer interneurons (MLIs), and MLI activity is required for fear memory consolidation. Here, we identified the critical involvement of adenylyl cyclase 5, in both the stress-induced increase in GluA2 in MLIs and the enhancement of fear memory.
View Article and Find Full Text PDFCerebellum
January 2025
Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau, ICM, Paris, F-75013, France.
Cerebellar functional and structural connectivity are likely related to motor function after stroke. Less is known about motor recovery, which is defined as a gain of function between two time points, and about the involvement of the cerebellum. Fifteen patients who were hospitalized between 2018 and 2020 for a first cerebral ischemic event with persistent upper limb deficits were assessed by resting-state functional MRI (rsfMRI) and clinical motor score measurements at 3, 9 and 15 weeks after stroke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!