Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Recent evidence suggests that attention deficit hyperactivity disorder (ADHD) is associated with a range of brain functional connectivity abnormalities, with one of the most prominent being reduced inhibition of the default mode network (DMN) while performing a cognitive task. In this study, we examine the effects of a methylphenidate dose on brain functional connectivity in boys diagnosed with ADHD while they performed a cognitive task.
Method: Brain functional connectivity was estimated using steady-state visual evoked potential partial coherence before and 90 min after the administration of a methylphenidate dose to 42 stimulant drug-naïve boys newly diagnosed with ADHD while they performed the A-X version of the continuous performance task (CPT A-X).
Results: Methylphenidate robustly reversed the transient functional connectivity increase in the A-X interval seen premedication to a postmedication decrease during this interval. In addition, methylphenidate-induced reductions in individual reaction time were correlated with corresponding reductions in functional connectivity.
Conclusion: These findings suggest that methylphenidate suppresses the increased functional connectivity observed in ADHD and that such suppression is associated with improved performance. Our findings support the suggestion that the increased functional connectivity we have observed in ADHD is associated with abnormal DMN activity. In addition, we comment on the significance of specific frequency channels mediating top-down communication within the cortex and the extent to which our findings are selectively sensitive to top-down intracortical communication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167011 | PMC |
http://dx.doi.org/10.1002/brb3.582 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!