Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Summary: Here we present SVScore, a tool for in silico structural variation (SV) impact prediction. SVScore aggregates per-base single nucleotide polymorphism (SNP) pathogenicity scores across relevant genomic intervals for each SV in a manner that considers variant type, gene features and positional uncertainty. We show that the allele frequency spectrum of high-scoring SVs is strongly skewed toward lower frequencies, suggesting that they are under purifying selection, and that SVScore identifies deleterious variants more effectively than alternative methods. Notably, our results also suggest that duplications are under surprisingly strong selection relative to deletions, and that there are a similar number of strongly pathogenic SVs and SNPs in the human population.
Availability And Implementation: SVScore is implemented in Perl and available freely at {{ http://www.github.com/lganel/SVScore }} for use under the MIT license.
Contact: ihall@wustl.edu.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408916 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btw789 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!