Hyperhomocysteinemia (HHcy) can result from liver disease or dysfunction and further alters intracellular lipid metabolism. Cytochrome P450 (CYP) arachidonic acid epoxygenases are expressed in human cancers and promote cancer metastasis. This study explored the interaction of Hcy and CYP450 metabolism in hepatocellular carcinoma (HCC). The levels of 4-epoxyeicosatrienoic acid (EET) isomers and their generative enzyme CYP2J2 level as well as intracellular Hcy level were higher in 42 cases of HCC than in paired non-tumor tissue. Elevated Hcy-decreased DNA methylation on SP1/AP1 binding motifs and enhancement on the CYP2J2 promoter via ERK1/2 signaling was essential for CYP2J2 upregulation and EET metabolism. Increased Hcy level enhanced the neoplastic cellular phenotype, which was reversed by CYP2J2 knockdown in vitro. Furthermore, tumor growth and size as well as patterns of CYP2J2 expression and DNA demethylation were increased with HHcy in mice induced orthotopically by 2% (wt/wt) L-methionine with or without folate deficiency. Moreover, the effect was attenuated by shRNA knockdown of CYP2J2. Thus, HHcy results from but can also promote hepatocarcingenesis via CYP450-EET metabolism by crosstalk of DNA demethylation of CYP2J2 and ERK1/2 signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5362492 | PMC |
http://dx.doi.org/10.18632/oncotarget.14165 | DOI Listing |
Eur J Radiol
January 2025
Department of Radiology, West China Hospital Sichuan University Chengdu Sichuan China. Electronic address:
Purpose: To develop and validate an MRI-based model for predicting postoperative early (≤2 years) recurrence-free survival (RFS) in patients receiving upfront surgical resection (SR) for beyond Milan hepatocellular carcinoma (HCC) and to assess the model's performance in separate patients receiving neoadjuvant therapy for similar-stage tumors.
Method: This single-center retrospective study included consecutive patients with resectable BCLC A/B beyond Milan HCC undergoing upfront SR or neoadjuvant therapy. All images were independently evaluated by three blinded radiologists.
Hepatology
January 2025
The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.
PLoS One
January 2025
Department of Geriatric Medicine, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
Objective: To develop a predictive model for microvascular invasion (MVI) in hepatocellular carcinoma (HCC) through radiomics analysis, integrating data from both enhanced computed tomography (CT) and magnetic resonance imaging (MRI).
Methods: A retrospective analysis was conducted on 93 HCC patients who underwent partial hepatectomy. The gold standard for MVI was based on the histopathological diagnosis of the tissue.
Adv Sci (Weinh)
January 2025
Department of Surgery, Center for Cancer Medicine, the Fourth Affiliated Hospital of School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
Irreversible electroporation (IRE) is a novel local tumor ablation technique that can potentially stimulate immune responses. However, IRE alone cannot effectively activate the immune system or prevent distant metastases. Therefore, this study utilized the biocompatibility of Chlorella vulgaris (C.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
Background: Hepatocellular carcinoma (HCC), the most common form of liver cancer, has a significant mortality rate, largely due to late diagnosis. Recent advances in medical research have demonstrated the potential of biomarkers for early detection. Moreover, the discovery and use of prognostic biomarkers offer a ray of hope in the fight against liver cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!