Heterogeneity among individual molecules and cells has posed significant challenges to traditional bulk assays, due to the assumption of average behavior, which would lose important biological information in heterogeneity and result in a misleading interpretation. Single molecule/cell analysis has become an important and emerging field in biological and biomedical research for insights into heterogeneity between large populations at high resolution. Compared with the ensemble bulk method, single molecule/cell analysis explores the information on time trajectories, conformational states, and interactions of individual molecules/cells, all key factors in the study of chemical and biological reaction pathways. Various powerful techniques have been developed for single molecule/cell analysis, including flow cytometry, atomic force microscopy, optical and magnetic tweezers, single-molecule fluorescence spectroscopy, and so forth. However, some of them have the low-throughput issue that has to analyze single molecules/cells one by one. Flow cytometry is a widely used high-throughput technique for single cell analysis but lacks the ability for intercellular interaction study and local environment control. Droplet microfluidics becomes attractive for single molecule/cell manipulation because single molecules/cells can be individually encased in monodisperse microdroplets, allowing high-throughput analysis and manipulation with precise control of the local environment. Moreover, hydrogels, cross-linked polymer networks that swell in the presence of water, have been introduced into droplet microfluidic systems as hydrogel droplet microfluidics. By replacing an aqueous phase with a monomer or polymer solution, hydrogel droplets can be generated on microfluidic chips for encapsulation of single molecules/cells according to the Poisson distribution. The sol-gel transition property endows the hydrogel droplets with new functionalities and diversified applications in single molecule/cell analysis. The hydrogel can act as a 3D cell culture matrix to mimic the extracellular environment for long-term single cell culture, which allows further heterogeneity study in proliferation, drug screening, and metastasis at the single-cell level. The sol-gel transition allows reactions in solution to be performed rapidly and efficiently with product storage in the gel for flexible downstream manipulation and analysis. More importantly, controllable sol-gel regulation provides a new way to maintain phenotype-genotype linkages in the hydrogel matrix for high throughput molecular evolution. In this Account, we will review the hydrogel droplet generation on microfluidics, single molecule/cell encapsulation in hydrogel droplets, as well as the progress made by our group and others in the application of hydrogel droplet microfluidics for single molecule/cell analysis, including single cell culture, single molecule/cell detection, single cell sequencing, and molecular evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.6b00370 | DOI Listing |
Talanta
February 2025
Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China. Electronic address:
Single-entity-based sensing platform has many advantages for real-time assays, such as single-molecule analysis, or targets detection in confined environment. In this contribution, a new single Au nanowire (NW) - Au@Pt/Au nanoparticles (Au@Pt/Au NPs) conjugated system was established and used for the detection of thrombin by using surface-enhanced Raman spectroscopy (SERS) technique. This method was mainly based on electrostatic attraction between the capture (thrombin aptamer) and probe molecules (crystal violet, CV) on the surface of Au NW - Au@Pt/Au NPs conjugation, reducing the adsorption of CV molecules on conjugation surface, and resulting the decrease of SERS signals.
View Article and Find Full Text PDFNat Commun
December 2023
Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan.
Force transmission at integrin-based adhesions is important for cell migration and mechanosensing. Talin is an essential focal adhesion (FA) protein that links F-actin to integrins. F-actin constantly moves on FAs, yet how Talin simultaneously maintains the connection to F-actin and transmits forces to integrins remains unclear.
View Article and Find Full Text PDFAdv Healthc Mater
March 2024
Department of Biomedical Engineering, and Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
Multimodal biomedical imaging and imaging-guided therapy have garnered extensive attention owing to the aid of nanoagents with the aim of further improving the therapeutic efficacy of diseases. The ability to engineer nanocomplexes (NCs) or control how they behave within an organism remains largely elusive. Here, a multifunctional nanoplatform is developed based on stabilized I-doped perovskite, CsPbBr I @SiO @Lip-c(RGD) (PSL-c(RGD) ) NCs.
View Article and Find Full Text PDFRes Sq
August 2023
Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto Japan.
Force transmission at integrin-based adhesions is important for cell migration and mechanosensing. Talin is an essential focal adhesion (FA) protein that links F-actin to integrins. F-actin constantly moves on FAs, yet how Talin simultaneously maintains the connection to F-actin and transmits forces to integrins remains unclear.
View Article and Find Full Text PDFBiosens Bioelectron
November 2023
Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China. Electronic address:
Static droplet array (SDA) is a pivotal tool for high-capacity screening assays, yet extraction and collection the target droplets that contain unique analytes or cells from the SDA remains one major technical bottleneck that limits its broader application. Here we present an optical-based on-demand droplet release (OODR) system by incorporating a 1064 nm laser-responsive indium tin oxide (ITO) layer into a chamber array-based droplet microfluidic chip. By focusing the 1064 nm laser onto the ITO layer, microbubbles can be created via local heating to selectively push-out the droplets from the chamber.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!