Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
All clinically-used antipsychotics display similar affinity for both D (D2R) and D (D3R) receptors, and they likewise act as 5-HT receptor antagonists. They provide therapeutic benefit for positive symptoms, but no marked or consistent improvement in neurocognitive, social cognitive or negative symptoms. Since blockade of D and 5-HT (5-HT6R) receptors enhances neurocognition and social cognition, and potentially improves negative symptoms, a promising approach for improved treatment for schizophrenia would be to develop drugs that preferentially act at D3R versus D2R and likewise recognize 5-HT6R. Starting from the high affinity 5-HT6R ligands I and II, we identified compounds 11a and 14b that behave as 5-HT6R ligands with significant selectivity for D3R over D2R.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2016.10.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!