A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comprehensive two-dimensional gas chromatographic profiling and chemometric interpretation of the volatile profiles of sweat in knit fabrics. | LitMetric

Human axillary sweat is a poorly explored biofluid within the context of metabolomics when compared to other fluids such as blood and urine. In this paper, we explore the volatile organic compounds emitted from two different types of fabric samples (cotton and polyester) which had been worn repeatedly during exercise by participants. Headspace solid-phase microextraction (SPME) and comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) were employed to profile the (semi)volatile compounds on the fabric. Principal component analysis models were applied to the data to aid in visualizing differences between types of fabrics, wash treatment, and the gender of the subject who had worn the fabric. Statistical tools included with commercial chromatography software (ChromaTOF) and a simple Fisher ratio threshold-based feature selection for model optimization are compared with a custom-written algorithm that uses cluster resolution as an objective function to maximize in a hybrid backward-elimination forward-selection approach for optimizing the chemometric models in an effort to identify some compounds that correlate to differences between fabric types. The custom algorithm is shown to generate better models than the simple Fisher ratio approach. Graphical Abstract A route from samples and questions to data and then answers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-016-0137-1DOI Listing

Publication Analysis

Top Keywords

comprehensive two-dimensional
8
two-dimensional gas
8
simple fisher
8
fisher ratio
8
gas chromatographic
4
chromatographic profiling
4
profiling chemometric
4
chemometric interpretation
4
interpretation volatile
4
volatile profiles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!