Mass loss from the West Antarctic ice shelves and glaciers has been linked to basal melt by ocean heat flux. The Totten Ice Shelf in East Antarctica, which buttresses a marine-based ice sheet with a volume equivalent to at least 3.5 m of global sea-level rise, also experiences rapid basal melt, but the role of ocean forcing was not known because of a lack of observations near the ice shelf. Observations from the Totten calving front confirm that (0.22 ± 0.07) × 10 m s of warm water enters the cavity through a newly discovered deep channel. The ocean heat transport into the cavity is sufficient to support the large basal melt rates inferred from glaciological observations. Change in ocean heat flux is a plausible physical mechanism to explain past and projected changes in this sector of the East Antarctic Ice Sheet and its contribution to sea level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161426 | PMC |
http://dx.doi.org/10.1126/sciadv.1601610 | DOI Listing |
Mar Environ Res
December 2024
Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, P.B, 11562, Egypt. Electronic address:
Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms.
View Article and Find Full Text PDFMar Drugs
December 2024
Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
Heat stress poses a significant challenge to animal husbandry, contributing to oxidative stress, intestinal mucosal injury, and apoptosis, which severely impact animal health, growth, and production efficiency. The development of safe, sustainable, and naturally derived solutions to mitigate these effects is critical for advancing sustainable agricultural practices. Butyrolactone-I (BTL-I), a bioactive compound derived from deep-sea fungi (Aspergillus), shows promise as a functional feed additive to combat heat stress in animals.
View Article and Find Full Text PDFFried pork rind, a processed pork by-product, is popular as a snack globally, prized for its distinctive flavor and crisp texture achieved through frying. Although various studies have examined processing factors such as thickness, moisture content, and brine concentration, there is a scarcity of research addressing the effect of frying temperature on the quality of fried pork rinds. In the present study, the effects of varying hot air drying times (12, 18, and 24 h at 50°C), traditional deep-fat frying temperatures (180°C, 195°C, and 210°C), and frying durations (3, 4, and 5 min) on the oil content, moisture content, breaking force, color, puffing ratio, and microstructural appearance of pork rinds were evaluated.
View Article and Find Full Text PDFBiophys Chem
December 2024
School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266500, China.
Glucose isomerase is generally used in the industrial production of high-fructose corn syrup, and a heat- and acid-resistant glucose isomerase is preferred. However, most glucose isomerases exhibit low activity or inactivation at low pH. In this study, we demonstrated that two combination mutants formed by introducing positive and negative charges near the active site and on the surface of the enzyme demonstrated a successful reduction in the optimal pH and increase in the specific activity of glucose isomerase from Thermotoga maritima (TMGI).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA 98105.
The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the global climate that is projected to weaken under future anthropogenic climate change. While many studies have investigated the AMOC's response to different levels and types of forcing in climate models, relatively little attention has been paid to the AMOC's sensitivity to the rate of forcing change, despite it also being highly uncertain in future emissions scenarios. In this study, I isolate the AMOC's response to different rates of CO increase in a state-of-the-art global climate model and find that the AMOC undergoes more severe weakening under faster rates of CO change, even when the magnitude of CO change is the same.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!