Na,K-ATPase and H,K-ATPase are electrogenic and nonelectrogenic ion pumps, respectively. The underlying structural basis for this difference has not been established, and it has not been revealed how the H,K-ATPase avoids binding of Na at the site corresponding to the Na-specific site of the Na,K-ATPase (site III). In this study, we addressed these questions by using site-directed mutagenesis in combination with enzymatic, transport, and electrophysiological functional measurements. Replacement of the cysteine C932 in transmembrane helix M8 of Na,K-ATPase with arginine, present in the H,K-ATPase at the corresponding position, converted the normal 3Na:2K:1ATP stoichiometry of the Na,K-ATPase to electroneutral 2Na:2K:1ATP stoichiometry similar to the electroneutral transport mode of the H,K-ATPase. The electroneutral C932R mutant of the Na,K-ATPase retained a wild-type-like enzyme turnover rate for ATP hydrolysis and rate of cellular K uptake. Only a relatively minor reduction of apparent Na affinity for activation of phosphorylation from ATP was observed for C932R, whereas replacement of C932 with leucine or phenylalanine, the latter of a size comparable to arginine, led to spectacular reductions of apparent Na affinity without changing the electrogenicity. From these results, in combination with structural considerations, it appears that the guanidine group of the M8 arginine replaces Na at the third site, thus preventing Na binding there, although allowing Na to bind at the two other sites and become transported. Hence, in the H,K-ATPase, the ability of the M8 arginine to donate an internal cation binding at the third site is decisive for the electroneutral transport mode of this pump.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240710 | PMC |
http://dx.doi.org/10.1073/pnas.1617951114 | DOI Listing |
Fish Shellfish Immunol
December 2024
Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
Prostaglandin E2 imparts diverse physiological effects on multiple cells through its actions on four distinct E-type prostanoid (EP) receptor subtypes (EP1-EP4), among which the EP4 is one of subtypes known to mediate the immune response in mammalian monocytes and macrophages. However, the precise characteristics and functions of EP4 in mollusks remain unclear. In the present study, an EP4 homologue (designated as CgEP4) was identified from oyster Crassostrea gigas.
View Article and Find Full Text PDFNeuron
December 2024
State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China. Electronic address:
PIEZO1 is a mechanically activated cation channel that undergoes force-induced activation and inactivation. However, its distinct structural states remain undefined. Here, we employed an open-prone PIEZO1-S2472E mutant to capture an intermediate open structure.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Chemistry - Biochemistry, Johannes Gutenberg-University, 55128 Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg-University, 55128 Mainz, Germany. Electronic address:
ABC transporters are membrane integral proteins that consist of a transmembrane (TMD) and nucleotide-binding domain (NBD). Two monomers (half-transporters) of the Bacillus subtilis ABC transporter BmrA (Bacillus multidrug-resistance ATP) dimerize to build a functional full-transporter. As all ABC exporters, BmrA uses the free energy of ATP hydrolysis to transport substrate molecules across the cell membrane.
View Article and Find Full Text PDFBiophys J
December 2024
I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia; Department of Biochemistry and Biomedical Sciences, Master University, Hamilton, Ontario, Canada. Electronic address:
Despite their large functional diversity and poor sequence similarity, tetrameric and pseudotetrameric potassium, sodium, calcium, and cyclic-nucleotide gated channels, as well as two-pore channels, transient receptor potential channels, and ionotropic glutamate receptor channels, share a common folding pattern of the transmembrane (TM) helices in the pore domain. In each subunit or repeat, two TM helices connected by a membrane-reentering P-loop contribute a quarter to the pore domain. The P-loop includes a membrane-descending helix, P1, which is structurally the most conserved element of these channels, and residues that contribute to the selectivity-filter region at the constriction of the ion-permeating pathway.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
The homotrimeric SARS-CoV-2 spike protein enables viral infection by undergoing a large conformational transition, which facilitates the fusion of the viral envelope with the host cell membrane. The spike protein is anchored to the SARS-CoV-2 envelope by its transmembrane domain (TMD), composed of three TM helices, each contributed by one of the protomers of spike. Although the TMD is known to be important for viral fusion, whether it is a passive anchor of the spike or actively promotes fusion remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!