Biocarriers Improve Bioaugmentation Efficiency of a Rapid Sand Filter for the Treatment of 2,6-Dichlorobenzamide-Contaminated Drinking Water.

Environ Sci Technol

Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven , Kasteelpark Arenberg 20 bus 2459, 3001 Heverlee, Belgium.

Published: February 2017

Aminobacter sp. MSH1 immobilized in an alginate matrix in porous stones was tested in a pilot system as an alternative inoculation strategy to the use of free suspended cells for biological removal of micropollutant concentrations of 2,6-dichlorobenzamide (BAM) in drinking water treatment plants (DWTPs). BAM removal rates and MSH1 cell numbers were recorded during operation and assessed with specific BAM degradation rates obtained in lab conditions using either freshly grown cells or starved cells to explain reactor performance. Both reactors inoculated with either suspended or immobilized cells showed immediate BAM removal under the threshold of 0.1 μg/L, but the duration of sufficient BAM removal was 2-fold (44 days) longer for immobilized cells. The longer sufficient BAM removal in case of immobilized cells compared to suspended cells was mainly explained by a lower initial loss of MSH1 cells at operational start due to volume replacement and shear. Overall loss of activity in the reactors though was due to starvation, and final removal rates did not differ between reactors inoculated with immobilized and suspended cells. Management of assimilable organic carbon, in addition to cell immobilization, appears crucial for guaranteeing long-term BAM degradation activity of MSH1 in DWTP units.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b05027DOI Listing

Publication Analysis

Top Keywords

bam removal
16
suspended cells
12
immobilized cells
12
cells
9
drinking water
8
removal rates
8
bam degradation
8
reactors inoculated
8
sufficient bam
8
bam
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!