Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydrogels are attractive materials for the controlled release of therapeutics because of their capacity to embed biologically active agents in their water-swollen network. Recent advances in organic and polymer chemistry, bioengineering and nanotechnology have resulted in several new developments in the field of hydrogels for therapeutic delivery. In this Perspective, we present our view on the state-of-the-art in the field, thereby focusing on a number of exciting topics, including bioorthogonal cross-linking methods, multicomponent hydrogels, stimuli-responsive hydrogels, nanogels, and the release of therapeutics from 3D printed hydrogels. We also describe the challenges that should be overcome to facilitate translation from academia to the clinic and last, we share our ideas about the future of this rapidly evolving area of research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.6b01604 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!