The main purpose of this study was to test if microorganisms isolated from heavily polluted environments can enhance dissolution of Pb-apatite (pyromorphite) resulting in remobilization of lead. Three bacterial strains belonging to the genus Pseudomonas isolated from underground mines in SW Poland were used in batch experiments of pyromorphite solubilization carried out in phosphate reach and phosphate poor media. Bacteria growth and evolution of Pb and phosphate concentrations as well as pH were determined. Additionally the concentration of bacterial siderophores in leaching solution was assayed. All bacterial strains were able to grow in both media in the presence of pyromorphite. The number of bacterial cells was from one to two orders of magnitude higher in the phosphate rich media. In the phosphate poor media the only source of P was the dissolving lead apatite. Bacteria enhanced the solubility of pyromorphite resulting in elevated Pb concentrations, up to 853 μg L in phosphate-rich medium and 6112 μg L in phosphate-poor medium, compared to less than 100 μg L in an abiotic control sample. Production of siderophores was characteristic for each culture and was much lower (10-1000 fold) in the phosphate-poor medium. This study demonstrates for the first time that indigenous bacteria can directly and indirectly promote the mobilization of lead from pyromorphite. This phenomenon should be considered in long term risk assessment of Pb contaminated soils after reclamation processes because bacteria can play a significant role in the efficiency of clean-up efforts and overall geochemical cycling of Pb.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2016.12.056 | DOI Listing |
BMC Genomics
January 2025
Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
Background: The advent of next generation sequencing technologies has enabled a surge in the number of whole genome sequences in public databases, and our understanding of the composition and evolution of bacterial genomes. Besides model organisms and pathogens, some attention has been dedicated to industrial bacteria, notably members of the Lactobacillaceae family that are commonly studied and formulated as probiotic bacteria. Of particular interest is Lactobacillus acidophilus NCFM, an extensively studied strain that has been widely commercialized for decades and is being used for the delivery of vaccines and therapeutics.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, India.
Endophytes are microorganisms residing in plant tissues without causing harm and their relevance in medicinal plants has grown due to their biomolecules used in pharmaceuticals. This study isolated two endophytic bacterial strains from the leaves of M. oleifera and P.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Jiangsu Longhuan Environmental Science Co. LTD, Changzhou, 213164, China.
A bacterial strain P1, capable of degrading diesel and converting thiosulfate to sulfate was isolated from an oil-contaminated soil sample. The cells were Gram-stain-negative, slightly curved rods and motile with a single polar flagellum. Growth of the strain was observed at 4-45 °C (optimum at 28 °C), at pH 4.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent.
View Article and Find Full Text PDFSci Rep
January 2025
Obstetrics and Gynaecology Department, Faculty of Medicine, Minia University, Minia, Egypt.
Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!