High mobility group box 1 (HMGB1), a chromatin protein, interacts with DNA and controls gene expression. However, when HMGB1 is released from apoptotic or damaged cells, it triggers proinflammatory reactions by interacting with various receptors, mainly receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs). The self-association of HMGB1 has been found to be crucial for its DNA-related biological functions. It is influenced by several factors, such as ionic strength, pH, specific divalent metal cations, redox environment and acetylation. This self-association may also play a role in the interaction with RAGE and TLRs and the concomitant inflammatory responses. Future studies should address the potential role of HMGB1 self-association on its interactions with DNA, RAGE and TLRs, as well as the influence of physicochemical factors in different cellular environments on these interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1873-3468.12545 | DOI Listing |
Int J Mol Sci
May 2020
The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
Interactions of the receptor for advanced glycation end product (RAGE) and its ligands in the context of their role in diabetes mellitus, inflammation, and carcinogenesis have been extensively investigated. This review focuses on the role of RAGE-ligands and anti-RAGE drugs capable of controlling cancer progression. Different studies have demonstrated interaction of RAGE with a diverse range of acidic (negatively charged) ligands such as advanced glycation end products (AGEs), high-mobility group box1 (HMGB1), and S100s, and their importance to cancer progression.
View Article and Find Full Text PDFFEBS Lett
January 2017
School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
High mobility group box 1 (HMGB1), a chromatin protein, interacts with DNA and controls gene expression. However, when HMGB1 is released from apoptotic or damaged cells, it triggers proinflammatory reactions by interacting with various receptors, mainly receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs). The self-association of HMGB1 has been found to be crucial for its DNA-related biological functions.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2016
School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia. Electronic address:
HMGB1 triggers proinflammatory reactions by interacting extracellularly with various receptors. HMGB1 also acts in the nucleus by interacting with DNA and controlling DNA transcription, a process which involves its self-association. The self-association of HMGB1 was characterized using surface plasmon resonance (SPR).
View Article and Find Full Text PDFStructure
October 2010
Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor involved in inflammatory processes and is associated with diabetic complications, tumor outgrowth, and neurodegenerative disorders. RAGE induces cellular signaling events upon binding of a variety of ligands, such as glycated proteins, amyloid-β, HMGB1, and S100 proteins. The X-ray crystal structure of the VC1 ligand-binding region of the human RAGE ectodomain was determined at 1.
View Article and Find Full Text PDFNucleic Acids Res
November 2009
MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridge CB2 0QH, UK.
Human mitochondrial transcription factor A (TFAM) is a multi-functional protein, involved in different aspects of maintaining mitochondrial genome integrity. In this report, we characterized TFAM and its interaction with tumor suppressor p53 using various biophysical methods. DNA-free TFAM is a thermally unstable protein that is in equilibrium between monomers and dimers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!