Numerous studies of the synthesis of mesoporous silica (MPS) particles with tailored properties have been published. Among those studies, tetraethyl orthosilicate (TEOS) is commonly used as a silica source, but tetramethyl orthosilicate (TMOS) is rarely used because its reaction is fast and difficult to control. In this study, MPS particles were synthesized via one-step controlled polymerization of styrene and hydrolysis of TMOS, followed by the addition of hexadecyltrimethylammonium bromide (CTAB) and n-octane. The MPS particles obtained from TMOS generally have small inner pores, but the MPS particles obtained in this study had a unique radially oriented structure, a high surface area up to 800 m g, and large pores, of size 20 nm. The content of styrene in the emulsion system played a key role in increasing pore sizes of the MPS particles. A plausible mechanism for particle formation based on the phase behavior and type of the emulsion system is proposed. For further research, this material is expected to be useful for various applications, such as in drug delivery, filtration, and catalyst supports.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b04023DOI Listing

Publication Analysis

Top Keywords

mps particles
20
synthesis mesoporous
8
mesoporous silica
8
unique radially
8
radially oriented
8
tetramethyl orthosilicate
8
emulsion system
8
particles
6
mps
5
tunable synthesis
4

Similar Publications

The effects of microplastic (MP) accumulation in freshwaters on organisms and ecosystem functions are poorly understood, as are the roles of MP particle properties in regulating these effects. In freshwater microcosms, we quantified variation in microbial communities and ecosystem functions and compared effects of MP concentration (0, 1000, 50000 particles/kg), shape (sphere, fragment, fibre), and polymer (polyethylene, polyethylene terephthalate, polypropylene, polystyrene) with those of a model invertebrate consumer (Chironomus riparius). We detected multiple effects of specific MP properties, especially associated with MP fragments and fibres, and the polymer polypropylene.

View Article and Find Full Text PDF

Environmental impact of microplastic emissions from wastewater treatment plant through life cycle assessment.

Sci Total Environ

January 2025

Department of Civil and Environmental Engineering, School of Digital Sciences and Engineering, Nazarbayev University, Astana 010000, Republic of Kazakhstan; Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana 010000, Republic of Kazakhstan. Electronic address:

This study aimed to quantify the environmental impact of microplastic (MP) emissions from wastewater treatment plants (WWTPs) using life cycle assessment (LCA). The investigation comprehensively evaluated the contribution of MPs to overall WWTP midpoint and endpoint impacts, with a detailed analysis of the influence of particle size, shape, polymer type, and the environmental costs and benefits of individual wastewater treatment processes on MP removal. The LCA model was developed using SimaPro software, with impact assessments conducted via the USEtox framework and the IMPACT World+ methodology.

View Article and Find Full Text PDF

Anisotropic particles have a wide range of applications in materials science such as emulsion stabilization, oil-water separation, and catalysis due to their asymmetric structure and properties. Nevertheless, designing and synthesizing large quantities of anisotropic particles with controlled morphologies continue to present considerable challenges. In this study, we successfully synthesized anisotropic microspheres using a soap-free seed emulsion polymerization method.

View Article and Find Full Text PDF

As the COVID-19 pandemic began in 2020, plastic usage spiked, and microplastic (MP) generation has increased dramatically. It is documented that MP can transfer from the source to the ocean environment where they accumulate as the destination. Therefore, it is essential to understand their transferring pathways and effective environmental factors to determine the distribution of MPs in the marine environment.

View Article and Find Full Text PDF

Aging of Polystyrene Micro/Nanoplastics Enhances Cephalosporin Phototransformation via Structure-Sensitive Interfacial Hydrogen Bonding.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.

Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!