This paper focuses on a problem of event-triggered stabilization for a class of nonuniformly sampled neural-network-based control systems (NNBCSs). First, a new event-triggered data transmission mechanism is designed based on the nonperiodic sampled data. Different from the previous works, the proposed triggering scheme enables the NNBCSs design to enjoy the advantages of both nonuniform and event-triggered sampling schemes. Second, under the nonperiodic event-triggered data transmission scheme, the nonperiodic sampled-data three-layer fully connected feedforward neural-network (TLFCFFNN)-based event-triggered controller is constructed, and the resulting closed-loop TLFCFFNN-based event-triggered control system is modeled as a state delay system based on time-delay system modeling approach. Then, the stability criteria for the closed-loop system is formulated using Lyapunov-Krasovskii functional approach. Third, the sufficient conditions for the codesign of the TLFCFFNN-based controller and triggering parameters are given in terms of solvability of matrix inequalities to guarantee the asymptotical stability of the closed-loop system and an upper bound on the given cost function while reducing the updates of the controller. Finally, three numerical examples are provided to illustrate the effectiveness and benefits of the proposed results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2016.2636875 | DOI Listing |
Int J Lab Hematol
January 2025
Computer Vision Institute, College of Computer Science and Software, Shenzhen University, China.
Background: Acute lymphoblastic leukemia (ALL) is a leading cause of death among pediatric malignancies. Early diagnosis of ALL is crucial for minimizing misdiagnosis, improving survival rates, and ensuring the implementation of precise treatment plans for patients.
Methods: In this study, we propose a multi-modal deep neural network-based framework for early and efficient screening of ALL.
Comput Med Imaging Graph
January 2025
Sapienza University of Rome, Department of Computer Control and Management Engineering Antonio Ruberti, 00185, Rome, Italy. Electronic address:
Predicting the outcome of antiretroviral therapies (ART) for HIV-1 is a pressing clinical challenge, especially when the ART includes drugs with limited effectiveness data. This scarcity of data can arise either due to the introduction of a new drug to the market or due to limited use in clinical settings, resulting in clinical dataset with highly unbalanced therapy representation. To tackle this issue, we introduce a novel joint fusion model, which combines features from a Fully Connected (FC) Neural Network and a Graph Neural Network (GNN) in a multi-modality fashion.
View Article and Find Full Text PDFSci Rep
January 2025
Dept. of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany.
Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy.
View Article and Find Full Text PDFBiomed Eng Lett
January 2025
Department of Computer Engineering, Kwangwoon University, Seoul, 01897 Republic of Korea.
Robotic systems rely on spatio-temporal information to solve control tasks. With advancements in deep neural networks, reinforcement learning has significantly enhanced the performance of control tasks by leveraging deep learning techniques. However, as deep neural networks grow in complexity, they consume more energy and introduce greater latency.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, 830011, China.
Litterfall load is crucial in maintaining ecosystem health, controlling wildfires, and estimating carbon stock in arid regions. However, there is a lack of spatiotemporal analysis of litterfall in arid riparian forests. This study aims to estimate Litterfall load using a BP neural network based on vegetation indices from Landsat 5 and 8 satellite images, litterfall inventory data, slope, and distance to major river tributaries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!