Chiral Nanoparticle as a New Efficient Antimicrobial Nanoagent.

Adv Healthc Mater

CAS Center of Excellence for Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, 11 Beiyitiao Zhongguancun, Beijing, 100190, P. R. China.

Published: February 2017

d-type functionalized nanoparticles (NPs) can bind to MurD ligase with high affinity and inhibit its peptidoglycan synthetic enzyme activity, and finally cause bacterial killing. In contrast, its L-type counterpart displays a negligible effect, indicating that the chiral structure of the functionalized NPs plays an essential role in their binding interaction with MurD and therefore the antibacterial activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201601011DOI Listing

Publication Analysis

Top Keywords

chiral nanoparticle
4
nanoparticle efficient
4
efficient antimicrobial
4
antimicrobial nanoagent
4
nanoagent d-type
4
d-type functionalized
4
functionalized nanoparticles
4
nanoparticles nps
4
nps bind
4
bind murd
4

Similar Publications

Based on the enhanced peroxidase-like activity of carbon dots nanozymes (CDszymes), with a specific oxidation reaction of D-amino acid oxidase catalysing the formation of HO from D-amino acid, an ultrasensitive sensing platform, was constructed for the quantitative detection of D-amino acids in saliva. With the increase of D-amino acids concentration, the blue color of catalytic product gradually deepend, the fluorescence CDszymes gradually quenched, and the temperature gradually increased. Using D-alanine as D-amino acid models, the detection limits of D-alanine in colorimetric/photothermal/fluorescent mode were 0.

View Article and Find Full Text PDF

Great efforts have been made in the last few decades to realize electronic devices based on organic molecules. A possible approach in this field is to exploit the chirality of organic molecules for the development of spintronic devices, an applicative way to implement the chiral-induced spin selectivity (CISS) effect. In this work we exploit enantiopure tetrathiafulvalene (TTF) derivatives as chiral inducers at the nanoscale.

View Article and Find Full Text PDF

The field of chiral nanoparticles is rapidly expanding, yet measuring the chirality of single nano-objects remains a challenging endeavor. Here, we report a technique to detect chiro-optical effects in single plasmonic nanoparticles by means of phase-sensitive polarization-resolved four-wave mixing interferometric microscopy. Beyond conventional circular dichroism, the method is sensitive to the particle polarizability, in amplitude and phase.

View Article and Find Full Text PDF

A Chiral Sensing Platform Based on a Starfish-Shaped AuCu Alloy for Chiral Analysis.

Anal Chem

January 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

Designing alloys with intrinsic chirality for chiral analysis is an interesting subject, since most alloys are achiral. Here, a starfish-shaped AuCu alloy is facilely prepared through simultaneous reduction of chloroauric acid (HAuCl) and copper chloride (CuCl) by l-ascorbic acid (l-AA). The resultant AuCu alloy exhibits fascinating chirality due to the chiral lattice distortion generated in the alloy.

View Article and Find Full Text PDF

() infections are increasingly challenging due to their propensity to form biofilms and low outer membrane permeability, especially in chronically infected patients with thick mucus. exhibits multiple drug resistance mechanisms, making it one of the most significant global public health threats. In this study, we found that moxifloxacin (MXC) and antibacterial peptides (ε-poly-l-lysine, ε-PLL) exhibited a synergistic effect against multidrug-resistant (MDR-).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!