Embryonic diapause is an evolutionary strategy to ensure that offspring are born when maternal and environmental conditions are optimal for survival. In many species of carnivores, obligate embryonic diapause occurs in every gestation. In mustelids, the regulation of diapause and reactivation is influenced by photoperiod, which then acts to regulate the secretion of pituitary prolactin. Prolactin in turn regulates ovarian steroid function. Reciprocal embryo transplant studies indicate that this state of embryonic arrest is conferred by uterine conditions and is presumed to be due to a lack of specific factors necessary for continued development. Studies of global gene expression in the mink (Neovison vison) revealed reduced expression of a cluster of genes that regulate the abundance of polyamines in the uterus during diapause, including the rate-limiting enzyme in polyamine production, ornithine decarboxylase (ODC). In addition, in this species, in vivo inhibition of the conversion of ornithine to the polyamine, putrescine, induces a reversible arrest in embryonic development and an arrest in both trophoblast and inner cell mass proliferation in vitro. Putrescine, at 0.5, 2 and 1,000 μM concentrations induced reactivation of mink embryos in culture, indicated by an increase in embryo volume, observed within five days. Further, prolactin induces ODC1 expression in the uterus, thereby regulating uterine polyamine levels. These results indicate that pituitary prolactin acts on ovarian and uterine targets to terminate embryonic diapause. In summary, our findings suggest that the polyamines, with synthesis under the control of pituitary prolactin, are the uterine factor whose absence is responsible for embryonic diapause in mustelid carnivores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/rda.12835 | DOI Listing |
Insects
December 2024
Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan.
In the present study, we investigated the possible correlation between insulin/ecdysone signaling and chilling-induced egg diapause termination in . Changes in () and () gene expression levels in chilled eggs (whose diapause had been terminated by chilling to 5 °C for 90 days) exhibited no significant increase after being transferred to 25 °C, which differed from both non-diapause eggs and HCl-treated eggs. We further compared the differential temporal expressions of (, -, and ), ( and ), and ( () and ()) as well as () genes between chilled eggs and eggs kept at 25 °C.
View Article and Find Full Text PDFCancer Res
January 2025
Medical Department of Hematology, Oncology and Tumor Immunology, Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Charité - Universitätsmedizin, Berlin, Germany.
Arch Insect Biochem Physiol
December 2024
Department of Sericultural Science, College of Animal Science, South China Agricultural University, Guangzhou, China.
Instant and refrigerated acid soaking are commonly used in cocoon production to prevent or break diapause, and provide developable silkworm eggs for sericulture, while their mechanisms have not been fully understood. This study aims to investigate the mechanisms by which hydrochloric acid (HCl) or dimethyl sulfoxide (DMSO) promotes embryonic development in silkworm Bombyx mori, focusing on the chloride ion (Cl) related gene expression profiles. Our results revealed that the HCl treatment of up to 6 min enhanced hatchability in freshly picked and cold-stored eggs, whereas a slight decrease in hatchability was observed in those treated with DMSO for 40 min.
View Article and Find Full Text PDFJ Vector Borne Dis
October 2024
Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia, Laboratório de Parasitologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brasil.
Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as dengue, Zika virus, and chikungunya. Ae. aegypti is a widely spread mosquito in tropical and subtropical regions, whereas Ae.
View Article and Find Full Text PDFBiol Reprod
December 2024
Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, People's Republic of China.
The embryonic diapause of the giant panda (Ailuropoda melanoleuca) has caused great difficulties in monitoring pregnancy in this vulnerable species. The secretion of prolactin (PRL) from anterior pituitary glandular lactotropic cells is an important signal for the termination of embryonic dormancy. Currently, the mechanism by which PRL affects embryonic diapause in giant pandas and methods for detecting PRL in this species are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!