A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Subjective and objective heterogeneity scores for differentiating small renal masses using contrast-enhanced CT. | LitMetric

Purpose: The aim of this study was to assess the effect of denoising on objective heterogeneity scores and its diagnostic capability for the diagnosis of angiomyolipoma (AML) and renal cell carcinoma (RCC).

Materials And Methods: A total of 158 resected renal masses ≤4 cm [98 clear cell (cc) RCCs, 36 papillary (pap)-RCCs, and 24 AMLs] from 139 patients were evaluated. A representative contrast-enhanced computed tomography (CT) image for each mass was selected by a genitourinary radiologist. A largest possible region of interest was drawn on each mass by the radiologist, from which three objective heterogeneity indices were calculated: standard deviation (SD), entropy (Ent), and uniformity (Uni). Objective heterogeneity indices were also calculated after images were processed with a denoising algorithm (non-local means) at three strengths: weak, medium, and strong. Two genitourinary radiologists also subjectively scored each mass independently using a three-point scale (1-3; with 1 the least and 3 the most heterogeneous), which were added to represent the final subjective heterogeneity score of each mass. Heterogeneity scores were compared among mass types, and area under the ROC curve (AUC) was calculated.

Results: For all heterogeneity indices, cc-RCC was significantly more heterogeneous than pap-RCC and AML (p < 0.001), but no significant difference was found between pap-RCC and AML (p > 0.01). For cc-RCC and pap-RCC differentiation, AUCs were 0.91, 0.81, 0.78, and 0.78 for the subjective score, SD, Ent, and Uni, respectively, using original images. The corresponding AUC values were 0.84, 0.74, 0.79, and 0.80 for differentiation of AML and cc-RCC. Noise reduction at weak setting improves AUC values by 0.03, 0.05, and 0.05 for SD, entropy, and uniformity for differentiation of cc-RCC from pap-RCC. Further increase of filtering strength did not improve AUC values. For differentiation of AML vs. cc-RCC, the AUC values stayed relatively flat using the noise reduction technique at different strengths for all three indices.

Conclusions: Both subjective and objective heterogeneity indices can differentiate cc-RCC from pap-RCC and AML. Noise reduction improved differentiation of cc-RCC from pap-RCC, but not differentiation of AML from cc-RCC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00261-016-1014-2DOI Listing

Publication Analysis

Top Keywords

objective heterogeneity
20
heterogeneity indices
16
cc-rcc pap-rcc
16
auc values
16
heterogeneity scores
12
differentiation aml
12
aml cc-rcc
12
noise reduction
12
subjective objective
8
heterogeneity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!