Reactive oxygen species (ROS) are assumed to be implicated in the pathogenesis of inborn mitochondrial diseases affecting oxidative phosphorylation (OXPHOS). In the current study, we characterized the effects of three small molecules with antioxidant properties (-acetylcysteine, ascorbate, and resveratrol) on ROS production and several OXPHOS parameters (growth in glucose free medium, ATP production, mitochondrial content and membrane potential (MMP)), in primary fibroblasts derived from seven patients with different molecularly defined and undefined mitochondrial diseases. -acetylcysteine appeared to be the most beneficial compound, reducing ROS while increasing growth and ATP production in some patients' cells. Ascorbate showed a variable positive or negative effect on ROS, ATP production, and mitochondrial content, while incubation with resveratrol disclosed either no effect or detrimental effect on ATP production and MMP in some cells. The individual responses highlight the importance of investigating multiple parameters in addition to ROS to obtain a more balanced view of the overall effect on OXPHOS when evaluating antioxidant treatment options for mitochondrial diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5294954 | PMC |
http://dx.doi.org/10.3390/jcm6010001 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
Impaired autophagy is reported to promote osteoarthritis (OA). However, the mechanism by which autophagy in regulating meniscus degeneration and OA remains unclear. Here, unconvered aberrant energetic metabolism pattern in meniscus cells with OA is uncovered first, which results in lower adenosine triphosphate (ATP) production.
View Article and Find Full Text PDFHypertension, a major cause of cardiomyopathy, is one of the most critical risk factors for heart failure and mortality worldwide. Loss of metabolic flexibility of cardiomyocytes is one of the major causes of heart failure. Although Catestatin (CST) treatment is known to be both hypotensive and cardioprotective, its effect on cardiac metabolism is unknown.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
February 2025
Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Background: Levosimendan (LEVO), a calcium sensitizer and adenosine triphosphate-dependent potassium channel opener, has been widely used for decades in medical and surgical patients for advanced heart failure (HF), right ventricular failure, cardiogenic shock, takotsubo cardiomyopathy, pulmonary hypertension, and so on. Currently, as the limited scope and lack of comprehensive data in current LEVO publications, there is an increasing obstacle to conducting new studies that require integrated information and quantifiable results. Thus, the current study was performed to identify the research trends and hot spots in LEVO-related publications using bibliometric software.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea. Electronic address:
Andrographis paniculata (AGPA) is known for its wide-ranging biological activities, including antiviral, antipyretic, and anticancer properties. However, its effects on muscle atrophy have not been well understood. This study investigates the impact of andrographolide (AD) and dehydroandrographolide succinate (DAS), key components of AGPA, on skeletal muscle atrophy using in vitro and in vivo models.
View Article and Find Full Text PDFAtractylenolide I (ATL-I) can interfere with Colorectal cancer (CRC) cell proliferation by changing apoptosis, glucose metabolism and other behaviors, making it an effective drug for inhibiting CRC tumor growth. In this paper, we investigated the interactions between ATL-I and Keratin 7 (KRT7), a CRC-specific marker, to determine the potential pathways by which ATL-I inhibits CRC development. The KRT7 expression level in CRC was predicted online using the GEPIA website and then validated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!