The flow of glaciers and polar ice sheets is controlled by the highly anisotropic rheology of ice crystals that have hexagonal symmetry (ice lh). To improve our knowledge of ice sheet dynamics, it is necessary to understand how dynamic recrystallization (DRX) controls ice microstructures and rheology at different boundary conditions that range from pure shear flattening at the top to simple shear near the base of the sheets. We present a series of two-dimensional numerical simulations that couple ice deformation with DRX of various intensities, paying special attention to the effect of boundary conditions. The simulations show how similar orientations of c-axis maxima with respect to the finite deformation direction develop regardless of the amount of DRX and applied boundary conditions. In pure shear this direction is parallel to the maximum compressional stress, while it rotates towards the shear direction in simple shear. This leads to strain hardening and increased activity of non-basal slip systems in pure shear and to strain softening in simple shear. Therefore, it is expected that ice is effectively weaker in the lower parts of the ice sheets than in the upper parts. Strain-rate localization occurs in all simulations, especially in simple shear cases. Recrystallization suppresses localization, which necessitates the activation of hard, non-basal slip systems.This article is part of the themed issue 'Microdynamics of ice'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5179956 | PMC |
http://dx.doi.org/10.1098/rsta.2015.0346 | DOI Listing |
Phys Chem Chem Phys
January 2025
State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Mechanoresponsive colloidal photonic crystals embedded in elastic solid matrices exhibit tunable optical properties under mechanical force, showing great potential for various applications. However, the response of colloidal crystals embedded in a liquid matrix remains largely unexplored. In this study, we investigate the structural and optical transitions of colloidal crystals composed of particles suspended in a liquid oligomer under pressing and shear forces.
View Article and Find Full Text PDFPharmaceutics
December 2024
Drug Product Development, Continuus Pharmaceuticals, Woburn, MA 01801, USA.
In recent years, with the increasing patient population, the need for complex and patient-centric medications has increased enormously. Traditional manufacturing techniques such as direct blending, high shear granulation, and dry granulation can be used to develop simple solid oral medications. However, it is well known that "one size fits all" is not true for pharmaceutical medicines.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Engineering, University of Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy.
This paper deals with the design of novel epoxy adhesives by incorporating thermoplastic polymers such as polyetherimide (PEI) and poly(ε-caprolactone) (PCL) into a bio-based and recyclable epoxy resin, known as Polar Bear. The adhesives were characterized by their mechanical (quasi-static and dynamic) and rheological properties, thermal stability, and adhesion properties in single-lap joints tested at three different temperatures (i.e.
View Article and Find Full Text PDFSci Rep
January 2025
Geological Survey of Western Australia, Perth, Australia.
It is well recognised that endothermic processes such as dehydration and partial melting have the potential to exert measurable effects on the maximum temperatures reached in metamorphic rock systems. We show migmatitic metapelitic and mafic granulites record temperatures of ~ 820 °C, while spatially associated refractory Mg-Al-rich granulites record temperatures between 865 °C and > 920 °C. These thermally contrasting samples are separated by ~ 1500 m, with no apparent intervening faults or shear zones to explain the apparent difference in peak metamorphic conditions.
View Article and Find Full Text PDFUltrasonics
January 2025
Acoustic and Application Group, Federal University of Alagoas, Campus Arapiraca, Brazil. Electronic address:
3D printing technology, also known as Additive Manufacturing (AM), has revolutionized object prototyping, offering a simple, cost-effective, and efficient approach to creating structures with diverse spatial features. However, the mechanical properties of 3D-printed structures are highly dependent on the material type and manufacturing technique employed. In this study, ultrasonic testing methods were used to comprehensively characterize standard samples produced using two popular printing techniques: material extrusion and vat photopolymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!