Understanding interparticle interactions in powder systems is crucial to pharmaceutical powder processing. Nevertheless, there remains a great challenge in identifying the key factors affecting interparticle interactions. Factors affecting interparticle interactions can be classified in three different broad categories: powder properties, environmental conditions, and powder processing methods and parameters. Although, each of these three categories listed is known to affect interparticle interactions, the challenge remains in developing a mechanistic understanding on how combination of these three categories affect interparticle interactions. This review focuses on the recent advances on understanding the effect of powder properties, particularly particle properties, its effect on interparticle interactions and ultimately on powder bulk behaviour. Furthermore, this review also highlights how particle properties are affected by the particle processing route and parameters. Recent advances in developing a particle processing route to prepare particles with desired properties allowing desired interparticle interaction to deliver favoured powder bulk behaviour are also discussed. Perspectives for the development of potential particle processing approaches to control interparticle interaction are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.12.045 | DOI Listing |
J Phys Chem B
January 2025
Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address:
Knowledge Gap: The aggregation of clay minerals in liquid water exemplifies colloidal self-assembly in nature. These negatively charged aluminosilicate platelets interact through multiple mechanisms with different sensitivities to particle shape, surface charge, aqueous chemistry, and interparticle distance and exhibit complex aggregation structures. Experiments have difficulty resolving the associated colloidal assemblages at the scale of individual particles.
View Article and Find Full Text PDFChemosphere
February 2025
Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, United States. Electronic address:
In agricultural and waste management systems, dairy manure wastewater is often recycled for irrigation. However, a key challenge lies in handling suspended solids (SS) and effectively dewatering sludge. To address this, an innovative polycationic soybean protein-based flocculant (SPI+) was developed and applied to enhance flocculation and sludge dewatering efficiency.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Physikalisches Institut der Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany.
We realize a Laughlin state of two rapidly rotating fermionic atoms in an optical tweezer. By utilizing a single atom and spin resolved imaging technique, we sample the Laughlin wave function thereby revealing its distinctive features, including a vortex distribution in the relative motion, correlations in the particles' relative angle, and suppression of the interparticle interactions. Our Letter lays the foundation for atom-by-atom assembly of fractional quantum Hall states in rotating atomic gases.
View Article and Find Full Text PDFNano Lett
January 2025
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China.
The net charge of individual nanoparticles in nonpolar solvents plays a critical role in their intrinsic properties like charge carrier lifetime, electron transport, and interparticle interactions. However, there is a long-standing belief that the oil-dispersed nanoparticles inherently possess no net charge. This work presents an approach for directly quantifying the net charge of individual nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!