Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mangiferin (Mgf), largely expressed out from the leaves and stem bark of Mango, is a potent antioxidant. However, its in vivo activity gets tremendously reduced owing to poor aqueous solubility and inconsistent gastrointestinal absorption, high hepatic first-pass metabolism and high P-gp efflux. The current research work, therefore, was undertaken to overcome the biopharmaceutical hiccups by developing the Mgf-phospholipid complex (PLCs) loaded in nanostructured lipidic carriers (NLCs). The PLCs and NLCs were prepared using refluxing, solvent evaporation and hot emulsification technique, respectively with three molar ratios of Mgf and Phospholipon 90G, i.e., 1:1; 1:2; and 1:3. The complex was evaluated for various physicochemical parameters like drug content (96.57%), aqueous solubility (25-fold improved) and oil-water partition coefficient (10-fold enhanced). Diverse studies on the prepared complex using FTIR, DSC, PXRD and SEM studies ratified the formation of PLCs at 1:1 ratio. The PLCs were further incorporated onto NLCs, which were systematically optimized employing a face centered cubic design (FCCD), while evaluating for particle size, zeta potential, encapsulation efficiency and in vitro drug release as the CQAs. Caco-2 cell line studies indicated insignificant cytotoxicity, and P-gp efflux, while bi-directional permeability model and in situ perfusion studies specified enhanced intestinal permeation parameters. In vivo pharmacokinetic studies revealed notable increase in the values of C (4.7-fold) and AUC (2.1-fold), respectively, from PLCs-loaded NLCs vis-à-vis Mgf solution. In a nutshell, the promising results observed from the present research work signify enhanced biopharmaceutical attributes of the novel PLCs-loaded NLCs for potentially augmenting the therapeutic efficacy of Mgf.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.12.044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!