Nanoreactors were created by entrapping homogeneous catalysts in hollow nanocapsules with 200 nm diameter and semipermeable nanometer-thin shells. The capsules were produced by the polymerization of hydrophobic monomers in the hydrophobic interior of the bilayers of self-assembled surfactant vesicles. Controlled nanopores in the shells of nanocapsules ensured long-term retention of the catalysts coupled with the rapid flow of substrates and products in and out of nanocapsules. The study evaluated the effect of encapsulation on the catalytic activity and stability of five different catalysts. Comparison of kinetics of five diverse reactions performed in five different solvents revealed the same reaction rates for free and encapsulated catalysts. Identical reaction kinetics confirmed that placement of catalysts in the homogeneous interior of polymer nanocapsules did not compromise catalytic efficiency. Encapsulated organometallic catalysts showed no loss of metal ions from nanocapsules suggesting stabilization of the complexes was provided by nanocapsules. Controlled permeability of the shells of nanocapsules enabled size-selective catalytic reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.6b06735DOI Listing

Publication Analysis

Top Keywords

homogeneous catalysts
8
nanocapsules
8
polymer nanocapsules
8
shells nanocapsules
8
catalysts
7
encapsulation homogeneous
4
catalysts porous
4
porous polymer
4
nanocapsules produces
4
produces fast-acting
4

Similar Publications

Platform chemicals from renewable resources with broad applications are highly desirable, particularly for replacing fossil-based monomers. Bifunctional aliphatic ester-aldehydes, accessible via regioselective hydroformylation of unsaturated oleochemicals, can be converted into linear ω-amino/ω-hydroxy esters and dicarboxylic acids-key building blocks for biobased aliphatic polycondensates. However, their success hinges on efficient, economically viable production, with catalyst recycling being critical.

View Article and Find Full Text PDF

Carbon dioxide-mediated catalytic pyrolysis of lignin in syngas production.

Int J Biol Macromol

January 2025

Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Kraft lignin (KL), a byproduct of the pulp and paper industry, is commonly combusted as a low-grade fuel. However, its high sulphur content results in the emission of sulphur oxides, which pose environmental hazards. This study explores a sustainable approach for the valorisation of waste KL into syngas via CO-mediated pyrolysis.

View Article and Find Full Text PDF

Selective Hydrogen Isotope Exchange Catalysed by Simple Alkali-Metal Bases in DMSO.

Angew Chem Int Ed Engl

January 2025

Universitat Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012, Bern, SWITZERLAND.

Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, and often exhibit high toxicity.

View Article and Find Full Text PDF

The cost of encoding a system Hamiltonian in a digital quantum computer as a linear combination of unitaries (LCU) grows with the 1-norm of the LCU expansion. The Block Invariant Symmetry Shift (BLISS) technique reduces this 1-norm by modifying the Hamiltonian action on only the undesired electron-number subspaces. Previously, BLISS required a computationally expensive nonlinear optimization that was not guaranteed to find the global minimum.

View Article and Find Full Text PDF

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!