Cells in the body use a variety of mechanisms to ensure the specificity and efficacy of signal transduction. One way that this is achieved is through tight spatial control over the position of different proteins, signaling sequences, and biomolecules within and around cells. For instance, the extracellular matrix protein fibronectin presents RGDS and PHSRN sequences that synergistically bind the αβ integrin when separated by 3.2 nm but are unable to bind when this distance is >5.5 nm.1 Building biomaterials to controllably space different epitopes with subnanometer accuracy in a three-dimensional (3D) hydrogel is challenging. Here, we synthesized peptides that self-assemble into nanofiber hydrogels utilizing the β-sheet motif, which has a known regular spacing along the peptide backbone. By modifying specific locations along the peptide, we are able to controllably space different epitopes with subnanometer accuracy at distances from 0.7 nm to over 6 nm, which is within the size range of many protein clusters. Endothelial cells encapsulated within hydrogels displaying RGDS and PHSRN in the native 3.2 nm spacing showed a significant upregulation in the expression of the alpha 5 integrin subunit compared to those in hydrogels with a 6.2 nm spacing, demonstrating the physiological relevance of the spacing. Furthermore, after 24 h the cells in hydrogels with the 3.2 nm spacing appeared to be more spread with increased staining for the αβ integrin. This self-assembling peptide system can controllably space multiple epitopes with subnanometer accuracy, demonstrating an exciting platform to study the effects of ligand density and location on cells within a synthetic 3D environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.6b05975 | DOI Listing |
Rev Sci Instrum
December 2024
OFS Laboratories, 19 Schoolhouse Road, Somerset, New Jersey 08873, USA.
Transmission matrix measurements of multimode fibers are now routinely performed in numerous laboratories, enabling control of the electric field at the distal end of the fiber and paving the way for the potential application to ultrathin medical endoscopes with high resolution. The same concepts are applicable to other areas, such as space division multiplexing, targeted power delivery, fiber laser performance, and the general study of the mode coupling properties of the fiber. However, the process of building an experimental setup and developing the supporting code to measure the fiber's transmission matrix remains challenging and time consuming, with full details on experimental design, data collection, and supporting algorithms spread over multiple papers or lacking in detail.
View Article and Find Full Text PDFOrg Process Res Dev
December 2024
Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
Control of powder properties is crucial for industrial processes across the food, pharmaceutical, agriculture, and mineral processing industries, and granulation is an important tool for providing agglomerated particles with controllable properties. However, existing granulation processes are not readily integrated with other processing steps and are not appropriate for some types of materials. Adding resonant acoustic-based granulation to the toolkit has the potential to widen the achievable parameter space and, importantly, integrate granulation into chemistry and blending operations that are already being performed on the RAM platform, resulting in process intensification.
View Article and Find Full Text PDFInteractions between magma oceans and overlying atmospheres on young rocky planets leads to an evolving feedback of outgassing, greenhouse forcing, and mantle melt fraction. Previous studies have predominantly focused on the solidification of oxidized Earth-similar planets, but the diversity in mean density and irradiation observed in the low-mass exoplanet census motivate exploration of strongly varying geochemical scenarios. We aim to explore how variable redox properties alter the duration of magma ocean solidification, the equilibrium thermodynamic state, melt fraction of the mantle, and atmospheric composition.
View Article and Find Full Text PDFFront Sports Act Living
December 2024
Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany.
Regular physical activity can prevent various physical and mental illnesses or improve their prognosis. However, only about half of the German population meets the WHO recommendations for physical activity. The aim of this study was to identify factors that influence engagement in regular exercise and could help increase physical activity levels in the general population.
View Article and Find Full Text PDFInt J Pharm
December 2024
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China; Key Laboratory of Marine Fishery Resources Employment & Utilization of Zhejiang Province, Hangzhou 310014, China. Electronic address:
Transdermal drug delivery represents a promising avenue for the treatment of dermatologic diseases, such as cutaneous melanoma and skin infections. This study involves the development of a novel therapeutic strategy that employs a skin-penetrating peptide SPACE-modified flexible liposomal chrysomycin A (CA@SPACE-LP) with a particle size of 111.5 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!