The impact of bio-remediation agent nZVI on environment is still inadequately understood, especially on aquatic food web. The study presented here has therefore considered both chemical (CS) and biological (BS) synthetic origins of nZVI and their effects on both algae and daphnia. The study is unique in its attempt to explore the possibility of trophic transfer from algae to its immediate higher niche (daphnia as the model). An equal weightage of the effects of both CS and BS nZVI on algae and daphnia has been explored here; hence it allows us to compare the capping of nZVI on toxicity. To examine the causes of observed lethality- ROS generation, effects on the activity of oxidative enzymes, membrane damage and biouptake of nZVI was analysed. The overall outcome of CS and BS nZVI on lethality was significantly different in algae and daphnia, where daphnia demonstrated relatively higher sensitivity against CS nZVI. Algae demonstrated considerable differences in CS and BS nZVI toxicity only at higher concentration. This study did not show a probable biomagnification and trophic transfer from algae to daphnia under the experimental conditions even at the highest exposure concentration. The study instigates the importance of trophic transfer to understand the possible biomagnification of nZVI among organisms of different trophic levels and eventually the consequences on environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2016.12.013 | DOI Listing |
J Hazard Mater
January 2025
CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC, United States.
Within the ITER project (International Thermonuclear Experimental Reactor) an international project building a magnetic confinement device to achieve fusion as a sustainable energy source, tungsten (W) is planned to serve as a plasma-facing component (PFC) in the tokamak, a magnetic confinement device used to produce controlled thermonuclear fusion power. Post plasma-W interactions, submicron tungsten particles can be released. This study investigated the exposure of lentic freshwater ecosystems to ITER-like tungsten nanoparticles in indoor aquatic mesocosms.
View Article and Find Full Text PDFMar Environ Res
January 2025
Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, C21, bloco C, Boqueirão, Santos, 11045-907, São Paulo, Brazil. Electronic address:
The antiretroviral therapy program's success in managing the human immunodeficiency virus (HIV) has inadvertently led to the release of antiretrovirals (ARVs) into worldwide aquatic ecosystems. However, few studies investigated the risks of ARV loadings that flow continuously to the marine waters of South America (such as Brazil). Against this backdrop, the aims of this study were: (i) to estimate the Predicted Environmental Concentration (PEC) of thirteen ARVs worldwide used in HIV treatment, and which are frequently disposed of in the marine aquatic ecosystems of Guarujá, São Paulo coastline, Brazil.
View Article and Find Full Text PDFSci Total Environ
January 2025
Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
The presence of the long-lived radionuclides Cs and Sr in ecosystems is a major environmental concern because bioavailable forms of the radionuclides are readily transferred to living organisms. The present study investigated how holometabolous insect development influences the fate of radiocaesium and radiostrontium by examining the behaviour of tracers (Cs and Sr) and stable elements during the larval feeding stage (21-23 days old), the pupal stage, and the adult stage. We aimed to evaluate the degree to which an herbivore or a detritivore food chain could serve as transfer pathways to higher trophic levels in terms of accumulation potential, and during which stage of development the accumulation potential is highest.
View Article and Find Full Text PDFMicrobiome
January 2025
Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
Background: Seawater microbes (bacteria and archaea) play essential roles in coral reefs by facilitating nutrient cycling, energy transfer, and overall reef ecosystem functioning. However, environmental disturbances such as degraded water quality and marine heatwaves, can impact these vital functions as seawater microbial communities experience notable shifts in composition and function when exposed to stressors. This sensitivity highlights the potential of seawater microbes to be used as indicators of reef health.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
ExxonMobil Petroleum and Chemical BV, Machelen, Belgium.
Despite the fact that the UN Stockholm Convention on persistent organic pollutants specifically acknowledges that Arctic ecosystems and Indigenous communities are particularly at risk due to biomagnification of contaminants in traditional foods, the bioconcentration factor (BCF) of substances in fish remains the preferred metric for identifying the biomagnification potential of organic substances. The BCF measures uptake of substances from water in water-breathing organisms, but not biomagnification of contaminants from food sources. The purpose of this study is to investigate how the biomagnification factor (BMF) can be used in bioaccumulation assessments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!