A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On the driving forces for complexation of methyl orange with polycations. | LitMetric

On the driving forces for complexation of methyl orange with polycations.

J Colloid Interface Sci

Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Electronic address:

Published: April 2017

Hypothesis: Complexation between Methyl orange and polycations involves multiple interactions dictated by molecular structure, composition (D/P), pH and ionic strength. The effect of ionic strength is considered a generic effect. By step-wise construction of complexes, we expect to gain insight in the nature of interactions and whether displacement by competing ions is a generic effect.

Experiments: We step-wise constructed complexes of methyl orange with two model polycations, whilst recording visible light spectra, size and electrophoretic mobility in buffered solution. MO organization was derived from discrete spectral changes, whereas complexes were described in terms of size and zeta-potential data. Spectral data were used to study the effect of competing ions, both potassium halides and polyanions, using a manual titration method.

Findings: Spectral and size data reveal a complex stoichiometry of D/P=2.2 and 4.6 for poly(ethylenimine hydrochloride)(PEI) and poly(di allyldimethyl amine hydrochloride) PDADMAC, respectively. Contrary to PEI-MO, the formation of PDADMAC-MO complexes is driven by hydrophobic rather than electrostatic interactions. Organization of PDADMAC-MO complexes also shows a strong dependency on the order of construction and polycation concentration. Displacement of MO by halides shows no effect of ion size for PEI, whereas Hofmeister series ordering was found for PDADMAC. The displacement by polyanions is shown to be charge-stoichiometric.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2016.12.021DOI Listing

Publication Analysis

Top Keywords

methyl orange
12
complexation methyl
8
orange polycations
8
ionic strength
8
competing ions
8
pdadmac-mo complexes
8
complexes
5
driving forces
4
forces complexation
4
polycations hypothesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!