Leaching and retention of dissolved metals in particulate loaded pervious concrete columns.

J Environ Manage

University of Connecticut, 261 Glenbrook Road, Department of Civil and Environmental Engineering, Storrs, CT 06269, USA. Electronic address:

Published: April 2017

This study examined metal leaching and retention in pervious concrete with or without embedded particulate matter. Particulate matter was collected from an adjacent parking lot and from a nearby parking garage as examples of weathered and un-weathered particulate matter. Particle size distributions were similar, but metal content was 3-35-fold higher and organic matter content was 3-fold higher in the parking garage particulate matter compared to the parking lot particulate matter. Replicate columns were established with either no particulate added as the control, or 20 g of parking lot or parking garage particulate matter. Synthetic rainwater was passed through the columns at variable rainfall intensity or fixed intensity to assess leaching. Metals were leached at higher concentrations from the parking garage particulate amended column, but from all columns less than 1% of the metal mass leached. Rainfall intensity did not have a large effect on leached metal concentrations, only varying effluent by about 2-fold. Synthetic stormwater with elevated dissolved Cu, Zn, Cd and Pb concentrations was passed through the same columns and metal removal efficiencies were on the order of 85-95%, 30-95%, 60-90%, and 95+% for each metal, respectively. After loading the column with a year's worth of stormwater metal exposure, removal efficiencies in the no particulate and parking lot particulate amended columns decreased, while parking garage particulate amended columns performed similarly with a small drop in Cu and Pb removal efficiencies. Generally, columns with no particulate and parking lot particulate amendments performed similarly, suggesting the pervious concrete is responsible for the majority of the initial metal retention. The parking garage particulate amended columns retained more metals from stormwater, perhaps due to an increase in pH that promoted surface precipitation as hydroxides or carbonate species on the pervious concrete, or due to complexation in the higher concentrations of organic matter and iron oxides in the particulate matter. Overall, metal retention was aided by the presence of organic matter in the particulate matter, but the pervious concrete itself was more important than particulates for metal retention. A strategy to increase metal retention and removal from the environment could involve amending pervious concrete with mixtures of well-defined sorbents to enhance metal retention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2016.12.047DOI Listing

Publication Analysis

Top Keywords

particulate matter
32
pervious concrete
24
parking garage
24
parking lot
20
garage particulate
20
metal retention
20
particulate
17
particulate amended
16
metal
12
organic matter
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!