Influence of cage size on heart rate and behavior in rhesus monkeys.

Am J Vet Res

California Primate Research Center, University of California, Davis 95616.

Published: September 1989

We studied 6 singly caged adult female rhesus monkeys to determine whether increased cage size had any effect on behavior or heart rate. Two monkeys at a time were placed in cages 40% larger than their standard cage for 1 week on 2 occasions, using a counter-balanced design. Direct behavioral observations were performed 75 minutes/week on each monkey. Heart rate and general activity were monitored 35 hours/week by a telemetry system. Statistically significant differences were not found in aggressive, submissive, abnormal, or self-abusive behavior, nor in time spent in the front half of the cage, duration of grooming, looking at the observer, or stereotyped or nonstereotyped locomotion. Vocalizations increased the first time in the larger cage, but not the second, and decreased upon the second return to the standard cage. Differences with respect to cage size were not found in heart rate or activity level, although there were significant variations at different times of day. We conclude that modest increases in cage size are unlikely to enrich the environment of singly caged laboratory primates.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cage size
16
heart rate
16
size heart
8
rhesus monkeys
8
singly caged
8
standard cage
8
cage
7
influence cage
4
size
4
heart
4

Similar Publications

Social group size alters social behavior and dopaminergic and serotonergic systems.

Soc Neurosci

January 2025

Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Republic of Korea.

Social behavior is affected by social structure type, but how neural function changes with social type remains unclear. We investigated whether social group size affects social behaviors based on dopamine (DA) and serotonin (5-HT) systems. Four-week-old male mice were housed under different social group sizes: one, two, four, and eight mice per cage (1mpc, 2mpc, 4mpc, 8mpc, respectively).

View Article and Find Full Text PDF

Phase separation of specific proteins into liquid-like condensates is a key mechanism for forming membrane-less organelles, which organize diverse cellular processes in space and time. These protein condensates hold immense potential as biomaterials capable of containing specific sets of biomolecules with high densities and dynamic liquid properties. Despite their appeal, methods to manipulate protein condensate materials remain largely unexplored.

View Article and Find Full Text PDF

Size Effect on Ultrafast Dynamics of the Photoexcited Be Electron in Be@C (2 = 60, 70, and 80).

J Phys Chem Lett

January 2025

MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.

The ultrafast excited-state dynamics of endohedral fullerenes are crucial in their photophysical and photochemical processes when they are employed as photovoltaic devices, photocatalytic devices, and single-molecule devices. In this study, by employing the non-adiabatic molecular dynamics simulations based on the time-dependent Kohn-Sham (TD-KS) method, we theoretically studied the size effect on ultrafast excited-state decay dynamics of the photoexcited Be electron in endohedral fullerenes Be@C (2 = 60, 70, and 80). These excited-state decay dynamics, which involve the charge-transfer process, occur in an ultrafast time scale of about 3 ps.

View Article and Find Full Text PDF

Metal-organic cages improving microporosity in polymeric membrane for superior CO capture.

Sci Adv

January 2025

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.

Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO and N or CH. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1).

View Article and Find Full Text PDF

Endohedral boron-doped scandium clusters BSc ( = 2-3, = 3-13): triangular - linear rearrangement of the B dopant.

Dalton Trans

January 2025

Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.

A theoretical investigation, employing density functional theory with the PBE functional and the Def2-TZVP basis set, comprehensively explores the geometric and electronic structures and properties of the boron doped scandium clusters BSc with = 2-3 and = 3-13. Introduction of B atoms significantly enhances the stability of the resulting clusters with respect to the initial counterparts. As the number of B atoms increases, the stability of the doped clusters improves, following the order: BSc > BSc > BSc > Sc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!