A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Clinically relevant hydrogel-based on hyaluronic acid and platelet rich plasma as a carrier for mesenchymal stem cells: Rheological and biological characterization. | LitMetric

AI Article Synopsis

  • A new injectable hydrogel made of platelet rich plasma and hyaluronic acid, combined with batroxobin, was developed for supporting mesenchymal stem cell delivery in intervertebral disc regeneration.
  • The hydrogel demonstrated quick gelation times (15 min at 20°C, 3 min at 37°C) and maintained high viability and proliferation of encapsulated MSCs while promoting their differentiation into chondrocyte-like cells, especially when exposed to TGF-β1.
  • This innovative approach shows great potential for clinical applications in disc regeneration due to the accessible components and effective support for stem cell behavior.

Article Abstract

Intervertebral disc regeneration is quickly moving towards clinical applications. However, it is still missing an ideal injectable hydrogel to support mesenchymal stem cells (MSC) delivery. Herein, a new injectable hydrogel composed of platelet rich plasma (PRP) and hyaluronic acid (HA) blended with batroxobin (BTX) as gelling agent, was designed to generate a clinically relevant cell carrier for disc regeneration. PRP/HA/BTX blend was tested for rheological properties. Amplitude sweep, frequency sweep, and rotational measurements were performed and viscoelastic properties were evaluated. Human MSC encapsulated in PRP/HA/BTX hydrogel were cultured in both growing medium and medium with or without TGF-β1 up to day 21. The amount of glycosaminoglycan was evaluated. Quantitative gene expression evaluation for collagen type II, aggrecan, and Sox 9 was also performed. Rheological tests showed that the hydrogel jellifies in 15 min 20°C and in 3 min at 37°C. Biological test showed that MSCs cultured in the hydrogel maintain high cell viability and proliferation. Human MSC within the hydrogel cultured with or without TGF-β1 showed significantly higher GAG production compared to control medium. Moreover, MSCs in the hydrogel underwent differentiation to chondrocyte-like cells with TGF-β1, as shown by histology and gene expression analysis. This novel hydrogel improves viability and proliferation of MSCs supporting the differentiation process toward chondrocyte-like cells. Rheology tests showed optimal gelation kinetics at room temperature for manipulation and faster gelation after transplantation (37°C). The clinical availability of all components of the hydrogel will allow a rapid translation of this regenerative approach into the clinical scenario. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2109-2116, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.23509DOI Listing

Publication Analysis

Top Keywords

hydrogel
9
clinically relevant
8
hyaluronic acid
8
platelet rich
8
rich plasma
8
mesenchymal stem
8
stem cells
8
disc regeneration
8
injectable hydrogel
8
human msc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!