Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To optimize and investigate the influence of bipolar gradients for flow suppression in metabolic quantification of hyperpolarized C chemical shift imaging (CSI) of mouse liver at 9.4 T.
Methods: The trade-off between the amount of flow suppression using bipolar gradients and T2* effect from static spins was simulated. A free induction decay CSI sequence with alternations between the flow-suppressed and non-flow-suppressed acquisitions for each repetition time was developed and was applied to liver tumor-bearing mice via injection of hyperpolarized [1- C] pyruvate.
Results: The in vivo results from flow suppression using the velocity-optimized bipolar gradient were comparable with the simulation results. The vascular signal was adequately suppressed and signal loss in stationary tissue was minimized. Application of the velocity-optimized bipolar gradient to tumor-bearing mice showed reduction in the vessel-derived pyruvate signal contamination, and the average lactate/pyruvate ratio increased by 0.095 (P < 0.05) in the tumor region after flow suppression.
Conclusion: Optimization of the bipolar gradient is essential because of the short C T2* and high signal in venous flow in the mouse liver. The proposed velocity-optimized bipolar gradient can suppress the vascular signal, minimizing T2*-related signal loss in stationary tissues at 9.4 T. Magn Reson Med 78:1674-1682, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.26578 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!