SCAN domains in zinc-finger transcription factors are crucial mediators of protein-protein interactions. Up to 240 SCAN-domain encoding genes have been identified throughout the human genome. These include cancer-related genes, such as the myeloid zinc finger 1 (), an oncogenic transcription factor involved in the progression of many solid cancers. The mechanisms by which SCAN homo- and heterodimers assemble and how they alter the transcriptional activity of zinc-finger transcription factors in cancer and other diseases remain to be investigated. Here, we provide the first description of the conformational ensemble of the MZF1 SCAN domain cross-validated against NMR experimental data, which are probes of structure and dynamics on different timescales. We investigated the protein-protein interaction network of MZF1 and how it is perturbed in different cancer types by the analyses of high-throughput proteomics and RNASeq data. Collectively, we integrated many computational approaches, ranging from simple empirical energy functions to all-atom microsecond molecular dynamics simulations and network analyses to unravel the effects of cancer-related substitutions in relation to MZF1 structure and interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156680PMC
http://dx.doi.org/10.3389/fmolb.2016.00078DOI Listing

Publication Analysis

Top Keywords

mzf1 scan
8
scan domain
8
zinc-finger transcription
8
transcription factors
8
mutational landscape
4
landscape oncogenic
4
mzf1
4
oncogenic mzf1
4
scan
4
domain cancer
4

Similar Publications

Myeloid zinc finger 1 knockdown promotes osteoclastogenesis and bone loss in part by regulating RANKL-induced ferroptosis of osteoclasts through Nrf2/GPX4 signaling pathway.

J Leukoc Biol

April 2024

Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China.

The overactivation of the osteoclasts is a crucial pathological factor in the development of osteoporosis. MZF1, belonging to the scan-zinc finger family, plays a significant role in various processes associated with tumor malignant progression and acts as an essential transcription factor regulating osteoblast expression. However, the exact role of MZF1 in osteoclasts has not been determined.

View Article and Find Full Text PDF

Stress-Inducible SCAND Factors Suppress the Stress Response and Are Biomarkers for Enhanced Prognosis in Cancers.

Int J Mol Sci

March 2023

Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan.

The cell stress response is an essential system present in every cell for responding and adapting to environmental stimulations. A major program for stress response is the heat shock factor (HSF)-heat shock protein (HSP) system that maintains proteostasis in cells and promotes cancer progression. However, less is known about how the cell stress response is regulated by alternative transcription factors.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is a reversible cellular program that transiently places epithelial (E) cells into pseudo-mesenchymal (M) cell states. The malignant progression and resistance of many carcinomas depend on EMT activation, partial EMT, or hybrid E/M status in neoplastic cells. EMT is activated by tumor microenvironmental TGFβ signal and EMT-inducing transcription factors, such as ZEB1/2, in tumor cells.

View Article and Find Full Text PDF

Mechanistic target of rapamycin (MTOR) is a highly conserved serine/threonine kinase that critically regulates cell growth, proliferation, differentiation, and survival. Previously, we have implicated as a plasmacytoma-resistance locus, , in mice. Here, we report that administration of the tumor-inducing agent pristane decreases gene expression to a greater extent in mesenteric lymph nodes of BALB/cAnPt mice than of DBA/2N mice.

View Article and Find Full Text PDF

Background: Osteopontin acts thru myeloid zinc finger-1 and transforming growth factor-β to drive the adoption of a cancer-associated fibroblast phenotype by local mesenchymal stem cells. Cancer-associated fibroblasts increase cancer cell stemness.

Methods: Mesenchymal stem cells were exposed to osteopontin or were cocultured with MB231 human breast cancer cells (high osteopontin producer) in the presence or absence of aptamer (inactivates extracellular osteopontin).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!