The International Center for Maize and Wheat Improvement (CIMMYT) leads the Global Wheat Program, whose main objective is to increase the productivity of wheat cropping systems to reduce poverty in developing countries. The priorities of the program are high grain yield, disease resistance, tolerance to abiotic stresses (drought and heat), and desirable quality. The Wheat Chemistry and Quality Laboratory has been continuously evolving to be able to analyze the largest number of samples possible, in the shortest time, at lowest cost, in order to deliver data on diverse quality traits on time to the breeders for making selections for advancement in the breeding pipeline. The participation of wheat quality analysis/selection is carried out in two stages of the breeding process: evaluation of the parental lines for new crosses and advanced lines in preliminary and elite yield trials. Thousands of lines are analyzed which requires a big investment in resources. Genomic selection has been proposed to assist in selecting for quality and other traits in breeding programs. Genomic selection can predict quantitative traits and is applicable to multiple quantitative traits in a breeding pipeline by attaining historical phenotypes and adding high-density genotypic information. Due to advances in sequencing technology, genome-wide single nucleotide polymorphism markers are available through genotyping-by-sequencing at a cost conducive to application for genomic selection. At CIMMYT, genomic selection has been applied to predict all of the processing and end-use quality traits regularly tested in the spring wheat breeding program. These traits have variable levels of prediction accuracy, however, they demonstrated that most expensive traits, dough rheology and baking final product, can be predicted with a high degree of confidence. Currently it is being explored how to combine both phenotypic and genomic selection to make more efficient the genetic improvement for quality traits at CIMMYT spring wheat breeding program.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167370PMC
http://dx.doi.org/10.1016/j.atg.2016.10.004DOI Listing

Publication Analysis

Top Keywords

genomic selection
24
quality traits
16
wheat
8
wheat quality
8
improvement cimmyt
8
cimmyt genomic
8
traits
8
breeding pipeline
8
traits breeding
8
quantitative traits
8

Similar Publications

Prospective validation study of a combined urine and plasma test for predicting high-grade prostate cancer in biopsy naïve men.

Scand J Urol

January 2025

Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing  clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.

View Article and Find Full Text PDF

Recent advances in genome editing tools and CRISPR-Cas technologies have enabled plant genome engineering reach new heights. The current regulatory exemptions for certain categories of genome edited products, such as those derived from SDN-1 and SDN-2, which are free of any transgene, have significantly accelerated genome editing research in a number of agricultural crop plants in different countries. Although CRISPR-Cas technology is becoming increasingly popular, it is still important to carefully consider a number of factors before planning and carrying conducting CRISPR-Cas studies.

View Article and Find Full Text PDF

Advances in modeling cellular state dynamics: integrating omics data and predictive techniques.

Anim Cells Syst (Seoul)

January 2025

Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea.

Dynamic modeling of cellular states has emerged as a pivotal approach for understanding complex biological processes such as cell differentiation, disease progression, and tissue development. This review provides a comprehensive overview of current approaches for modeling cellular state dynamics, focusing on techniques ranging from dynamic or static biomolecular network models to deep learning models. We highlight how these approaches integrated with various omics data such as transcriptomics, and single-cell RNA sequencing could be used to capture and predict cellular behavior and transitions.

View Article and Find Full Text PDF

Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!