Combination of anticancer drugs with therapeutic microRNA (miRNA) has emerged as a promising anticancer strategy. However, the promise is hampered by a lack of desirable delivery systems. We report on the development of self-immolative nanoparticles capable of simultaneously delivering miR-34a mimic and targeting dysregulated polyamine metabolism in cancer. The nanoparticles were prepared from a biodegradable polycationic prodrug, named DSS-BEN, which was synthesized from a polyamine analog N,N-bisethylnorspermine (BENSpm). The nanoparticles were selectively disassembled in the cytoplasm where they released miRNA. Glutathione (GSH)-induced degradation of self-immolative linkers released BENSpm from the DSS-BEN polymers. MiR-34a mimic was effectively delivered to cancer cells as evidenced by upregulation of intracellular miR-34a and downregulation of Bcl-2 as one of the downstream targets of miR-34a. Intracellular BENSpm generated from the degraded nanoparticles induced the expression of rate-limiting enzymes in polyamine catabolism (SMOX, SSAT) and depleted cellular natural polyamines. Simultaneous regulation of polyamine metabolism and miR-34a expression by DSS-BEN/miR-34a not only enhanced cancer cell killing in cultured human colon cancer cells, but also improved antitumor activity in vivo. The reported findings validate the self-immolative nanoparticles as delivery vectors of therapeutic miRNA capable of simultaneously targeting dysregulated polyamine metabolism in cancer, thereby providing an elegant and efficient approach to combination nanomedicines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5258827 | PMC |
http://dx.doi.org/10.1016/j.jconrel.2016.12.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!