Unlabelled: A multi-scale model using the cellular automata (CA) and kinetic Monte Carlo (KMC) methods is presented to simulate the degradation process of bioresorbable polyesters such as polylactide (PLA), polyglycolide (PGA) and their copolymers. The model considers the underlying chemical and physical events such as polymer chain scission, oligomer production, crystallization induced by polymer chain scissions, oligomer diffusion and microstructure evolution due to erosion of the small chains. A macroscopic device is discretized into an array of mesoscopic cells. Each cellular lattice is assumed to be made of one polymer chain, which undergoes hydrolysis reaction. The polymer chain scission is modeled using a kinetic Monte Carlo method. Oligomer production, chain crystallization and formation of cavities due to polymer collapse are also modeled on the cellular lattice. Oligomer diffusion is modeled by using Fick's laws at the macroscopic scale. The diffusion coefficient is taken as dependent on the porosity caused by the formation of the cavities. The interactions among the microscopic hydrolysis reaction, mesoscopic formation of cavities and macroscopic diffusion are taken into account. The proposed method forms Multi Scale Cellular Monte Carlo Automata (MS-CMCA). The three-scale approach consists of continuous method and discrete method to deal with certainty problem with underlying stochastic phenomenon. Demonstration examples are provided which show that the model can fit with experimental data in the literature very well.
Statement Of Significance: The original work in this paper is a multi-scale method (including micro scale, mesoscopic scale, macro scale and their coupling) for modeling degradation of bioresorbable polyesters and provides understanding to the process of degradation of biodegradable polymers. The result denotes the solution is reliable. As we know, there have no papers recently to implement three scales modeling and its coupling. There is a two-scale model of amorphous polyester degradation described by Han and Pan (Acta Biomaterialia 2011), our model accounts for effects of re-crystallization to explain the degradation process from three scales and takes into account of copolymers. From our model, the molecular weight distribution with time, chain number with time, degree of crystallinity with time, the evolution of polymer inner shape, weight loss with time (which is found from calculation that both oligomer diffusion and small molecules solution work to the weight loss) can be obtained from the calculation of the three scale model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2016.12.046 | DOI Listing |
Sci Rep
January 2025
Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), 01069, Dresden, Germany.
Template-assisted colloidal self-assembly has gained significant attention due to its flexibility and versatility. By precisely controlling the shape of the template, it is possible to achieve custom-designed nanoparticle assemblies. However, a major challenge remains in fabricating these templates over large areas at a low cost.
View Article and Find Full Text PDFNat Mater
January 2025
School of Chemistry, Beihang University, Beijing, China.
The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
Background And Objectives: Invasive procedures may delay the diagnostic process in multiple sclerosis (MS). We investigated the added value of serum neurofilament light chain (sNfL), glial fibrillary acidic protein (sGFAP), chitinase-3-like 1 (sCHI3L1), and the immune responses to the Epstein-Barr virus-encoded nuclear antigen 1 to current MS diagnostic criteria.
Methods: In this multicentric study, we selected patients from 2 prospective cohorts presenting a clinically isolated syndrome (CIS).
Langmuir
January 2025
School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.
Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
Chain-end reactivation of polymethacrylates generated by reversible-deactivation radical polymerization (RDRP) has emerged as a powerful tool for triggering depolymerization at significantly milder temperatures than those traditionally employed. In this study, we demonstrate how the facile depolymerization of poly(butyl methacrylate) (PBMA) can be leveraged to selectively skew the molecular weight distribution (MWD) and predictably alter the viscoelastic properties of blended PBMA mixtures. By mixing polymers with thermally active chain ends with polymers of different molecular weights and inactive chain ends, the MWD of the blends can be skewed to be high or low by selective depolymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!