AAV-mediated transfer of RhoA shRNA and CNTF promotes retinal ganglion cell survival and axon regeneration.

Neuroscience

Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China; Department of Neurology, Affiliated Hospital of Hubei University for Nationalities, Enshi, PR China. Electronic address:

Published: February 2017

The aim of the present study was to determine whether adeno-associated viral vector (AAV) mediated transfer of ciliary neurotrophic factor (CNTF) and RhoA shRNA has additive effects on promoting the survival and axon regeneration of retinal ganglion cells (RGCs) after optic nerve crush (ONC). Silencing effects of AAV-RhoA shRNA were confirmed by examining neurite outgrowth in PC12 cells, and by quantifying RhoA expression levels with western blotting. Young adult Fischer rats received an intravitreal injection of (i) saline, (ii) AAV green fluorescent protein (GFP), (iii) AAV-CNTF, (iv) AAV-RhoA shRNA, or (v) a combination of both AAV-CNTF and AAV-RhoA shRNA. Two weeks later, the ON was completely crushed. Three weeks after ONC, RGC survival was estimated by counting βIII-tubulin-positive neurons in retinal whole mounts. Axon regeneration was evaluated by counting GAP-43-positive axons in the crushed ON. It was found that AAV-RhoA shRNA decreased RhoA expression levels and promoted neurite outgrowth in vitro. In the ONC model, AAV-RhoA shRNA by itself had only weak beneficial effects on RGC axon regeneration. However, when combined with AAV-CNTF, AAV-RhoA shRNA significantly improved the therapeutic effect of AAV-CNTF on axon regeneration by nearly two fold, even though there was no significant change in RGC viability. In sum, this combination of vectors increases the regenerative response and can lead to more successful therapeutic outcomes following neurotrauma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2016.12.027DOI Listing

Publication Analysis

Top Keywords

aav-rhoa shrna
24
axon regeneration
20
aav-cntf aav-rhoa
12
shrna
8
rhoa shrna
8
retinal ganglion
8
survival axon
8
neurite outgrowth
8
rhoa expression
8
expression levels
8

Similar Publications

AAV-mediated transfer of RhoA shRNA and CNTF promotes retinal ganglion cell survival and axon regeneration.

Neuroscience

February 2017

Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou, PR China; Department of Neurology, Affiliated Hospital of Hubei University for Nationalities, Enshi, PR China. Electronic address:

The aim of the present study was to determine whether adeno-associated viral vector (AAV) mediated transfer of ciliary neurotrophic factor (CNTF) and RhoA shRNA has additive effects on promoting the survival and axon regeneration of retinal ganglion cells (RGCs) after optic nerve crush (ONC). Silencing effects of AAV-RhoA shRNA were confirmed by examining neurite outgrowth in PC12 cells, and by quantifying RhoA expression levels with western blotting. Young adult Fischer rats received an intravitreal injection of (i) saline, (ii) AAV green fluorescent protein (GFP), (iii) AAV-CNTF, (iv) AAV-RhoA shRNA, or (v) a combination of both AAV-CNTF and AAV-RhoA shRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!