Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Describing tumor growth is a key issue in oncology for correctly understanding the underlying mechanisms leading to deleterious cancers. In order to take into account the micro-environment in tumor growth, we used a model describing - at the tissue level - the interactions between host (non malignant), effector immune and tumor cells to simulate the evolution of cancer. The spatial growth is described by a Laplacian operator for the diffusion of tumor cells. We investigated how the evolution of the tumor diameter is related to the dynamics (periodic or chaotic oscillations, stable singular points) underlying the interactions between the different populations of cells in proliferation sites. The sensitivity of this evolution to the key parameter responsible for the immuno-evasion, namely the growth rate of effector immune cells and their inhibition rate by tumor cells, is also investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2016.12.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!