Efficient gene delivery to primary human retinal pigment epithelial cells: The innate and acquired properties of vectors.

Int J Pharm

Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran. Electronic address:

Published: February 2017

The purpose of this study is designing non-viral gene delivery vectors for transfection of the primary human retinal pigment epithelial cells (RPE). In the design process of gene delivery vectors, considering physicochemical properties of vectors alone does not seem to be enough since they interact with constituents of the surrounding environment and hence gain new characteristics. Moreover, due to these interactions, their cargo can be released untimely or undergo degradation before reaching to the target cells. Further, the characteristics of cells itself can also influence the transfection efficacy. For example, the non-dividing property of RPE cells can impede the transfection efficiency which in most studies was ignored by using immortal cell lines. In this study, vectors with different characteristics differing in mixing orders of pDNA, PEI polymer, and PLGA/PEI or PLGA nanoparticles were prepared and characterized. Then, their characteristics and efficacy in gene delivery to RPE cells in the presence of vitreous or fetal bovine serum (FBS) were evaluated. All formulations showed no cytotoxicity and were able to protect pDNA from premature release and degradation in extracellular media. Also, the adsorption of vitreous or serum proteins onto the surface of vectors changed their properties and hence cellular uptake and transfection efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2016.12.048DOI Listing

Publication Analysis

Top Keywords

gene delivery
16
primary human
8
human retinal
8
retinal pigment
8
pigment epithelial
8
epithelial cells
8
properties vectors
8
delivery vectors
8
transfection efficacy
8
rpe cells
8

Similar Publications

Adeno-Associated Viruses as Gene Delivery Tools for Diabetic Heart Disease and Failure: Key Considerations for Clinicians and Preclinical Researchers.

Heart Lung Circ

January 2025

Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Vic, Australia; Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia. Electronic address:

Diabetes is becoming more common worldwide, and people with diabetes are twice as likely to experience heart problems compared to those without diabetes. These cardiovascular complications are the foremost cause of mortality among people with diabetes. A specific form of heart failure known as "diabetic cardiomyopathy" can develop in individuals with diabetes.

View Article and Find Full Text PDF

A critical view of silk fibroin for non-viral gene therapy.

Int J Biol Macromol

January 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China. Electronic address:

Exogenous genes are inserted into target cells during gene therapy in order to compensate or rectify disorders brought on by faulty or aberrant genes. However, gene therapy is still in its early stages because of its unsatisfactory therapeutic effects which are mainly due to low transfection efficiency of vectors, high toxicity, and poor target specificity. A natural polymer with numerous bioactive sites, good mechanical qualities, biodegradability, biocompatibility, and processability called silk fibroin has gained attention as a possible gene therapy vector.

View Article and Find Full Text PDF

Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges.

View Article and Find Full Text PDF

Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .

View Article and Find Full Text PDF

In this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!